login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324133
Number of permutations of [n] that avoid the shuffle pattern s-k-t, where s = 12 and t = 12.
1
1, 1, 2, 6, 24, 114, 608, 3554, 22480, 152546, 1103200, 8456994, 68411632, 581745250, 5183126016, 48245682338, 467988498064, 4720072211938, 49400302118560, 535546012710434, 6004045485933104, 69507152958422370, 829789019700511040, 10202854323325253538, 129061753086335478736
OFFSET
0,3
COMMENTS
Stirling transform of j-> ceiling(2^(j-2)). - Alois P. Heinz, Aug 25 2021
LINKS
Sergey Kitaev, Partially Ordered Generalized Patterns, Discrete Math. 298 (2005), no. 1-3, 212-229.
FORMULA
a(n) = -2^(n-1) + 2*Sum_{i = 0..n-1} binomial(n-1,i) * a(i) with a(0) = 1. [It follows from Kitaev's recurrence for C_n on p. 220 of his paper.] - Petros Hadjicostas, Oct 30 2019
From Alois P. Heinz, Aug 25 2021: (Start)
G.f.: Sum_{k>=0} ceiling(2^(k-2))*x^k / Product_{j=1..k} (1-j*x).
a(n) = Sum_{j=0..n} Stirling2(n,j)*ceiling(2^(j-2)). (End)
MAPLE
b:= proc(n, m) option remember; `if`(n=0,
ceil(2^(m-2)), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..24); # Alois P. Heinz, Aug 25 2021
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0,
Ceiling[2^(m-2)], m*b[n-1, m] + b[n-1, m+1]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Apr 15 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 16 2019
EXTENSIONS
More terms from Petros Hadjicostas, Oct 30 2019
STATUS
approved