login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054872 Number of (12345, 13245, 21345, 23145, 31245, 32145)-avoiding permutations. 6
1, 1, 2, 6, 24, 114, 600, 3372, 19824, 120426, 749976, 4762644, 30723792, 200778612, 1326360048, 8842981848, 59425117152, 402092408346, 2737156004376, 18732169337604, 128806616999184, 889479590046108, 6165939982059600, 42891532191557736, 299307319060137504 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Hankel transform is A083667, the number of different antisymmetric relations on n labeled points. - Paul Barry, Jun 26 2008
Conjectured to be the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {5>1, 1>2, 1>3, 1>4} of length 5. That is, conjectured to be the number of length n+1 permutations having no subsequences of length 5 in which the fifth element is the largest and the first element is the next largest - Sergey Kitaev, Dec 13 2020
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n=1..200 from Vincenzo Librandi)
Elena Barcucci, Alberto Del Lungo, Elisa Pergola, and Renzo Pinzani, Permutations avoiding an increasing number of length-increasing forbidden subsequences, Discrete Mathematics and Theoretical Computer Science 4, 2000, 31-44.
Christian Bean, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, Permutations avoiding bipartite partially ordered patterns have a regular insertion encoding, arXiv:2312.07716 [math.CO], 2023.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
Eric Weisstein's World of Mathematics, Legendre Polynomial.
FORMULA
G.f.: 1 + x*(2 - 2*x - (1 - 8*x + 4*x^2)^(1/2)). - corrected by Vaclav Kotesovec, Oct 11 2012
a(n) = 2*A047891(n-1), n>=2. - Philippe Deléham, Aug 17 2007
Recurrence: (n-1)*a(n) = 4*(2*n-5)*a(n-1) - 4*(n-4)*a(n-2). - Vaclav Kotesovec, Oct 11 2012
a(n) ~ sqrt(26*sqrt(3)-45)*(4+2*sqrt(3))^n/(sqrt(8*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 11 2012
From Vladimir Reshetnikov, Nov 01 2015: (Start)
a(n) = 2^(n-1)*(LegendreP_{n-1}(2) - LegendreP_{n-3}(2))/(2*n-3).
For n > 2, a(n) = 6*hypergeom([2-n,3-n], [2], 3).
(End)
G.f. satisfies: A(x) = x * Sum_{n>=0} ( A(x)/x + 4*x + x/A(x) )^n / (2*4^n). - Paul D. Hanna, Mar 24 2016
G.f. satisfies: A(x) = x * Sum_{n>=0} ( A(x)/x + 4*x - x/A(x) )^n / 4^n. - Paul D. Hanna, Mar 24 2016
EXAMPLE
G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 114*x^5 + 600*x^6 + 3372*x^7 + 19824*x^8 + ...
MAPLE
Set j=3 in the following: f := (x, j)->1-(j+1)*x- sqrt(1-2*(j+1)*x+(j-1)^2*x^2); t := (x, j)->sum(k!*x^k, k=1..(j-1)); s := (x, j)->x^(j-2)*(j-1)!*(f(x, j))/(2)+ t(x, j);
MATHEMATICA
Table[SeriesCoefficient[x*(2-2*x-(1-8*x+4*x^2)^(1/2)), {x, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 11 2012 *)
Table[2^(n-1) (LegendreP[n-1, 2] - LegendreP[n-3, 2])/(2n-3), {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
PROG
(PARI) x='x+O('x^50); Vec(x*(2-2*x-(1-8*x+4*x^2)^(1/2))) \\ Altug Alkan, Nov 02 2015
CROSSREFS
Sequence in context: A245233 A228907 A209625 * A134664 A324133 A171448
KEYWORD
nonn
AUTHOR
Elisa Pergola (elisa(AT)dsi.unifi.it), May 26 2000
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 13 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 18:16 EDT 2024. Contains 371916 sequences. (Running on oeis4.)