login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209625
G.f. A(x) satisfies A(A(x)-2*A(x)^2)=x/(1-2*x)
0
1, 2, 6, 24, 114, 600, 3372, 19824, 120422, 749848, 4760228, 30688560, 200338740, 1321408656, 8791205496, 58912586784, 397228820742, 2692522813848, 18333530047428, 125325068538672, 859639878194844
OFFSET
1,2
FORMULA
a(n)=T(n,1), T(n,m)=1/2*(binomial(n-1,m-1)*2^(n-m)-(sum(k=m+1..n-1, T(k,m)*sum(i=k..n, T(n,i)*binomial(k,i-k)*(-2)^(i-k)))+sum(i=m+1,n, T(n,i)*binomial(m,i-m)*(-2)^(i-m)))), T(n,n)=1.
PROG
(Maxima)
T(n, m):=if n=m then 1 else 1/2*(binomial(n-1, m-1)*2^(n-m)-(sum(T(k, m)*sum(T(n, i)*binomial(k, i-k)*(-2)^(i-k), i, k, n), k, m+1, n-1)+sum(T(n, i)*binomial(m, i-m)*(-2)^(i-m), i, m+1, n)));
makelist(T(n, 1), n, 1, 7);
CROSSREFS
Sequence in context: A192088 A245233 A228907 * A054872 A134664 A375913
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 11 2012
STATUS
approved