login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285455
Least number x such that x^n has n digits equal to k. Case k = 8.
2
8, 83, 92, 303, 525, 269, 725, 2169, 1298, 3466, 867, 1809, 4624, 793, 7252, 5195, 7521, 21397, 11286, 10482, 19713, 9573, 15815, 27879, 20978, 39673, 53445, 25276, 30943, 93984, 39767, 59441, 92928, 61256, 84303, 113117, 145948, 76304, 109934, 208709, 92674, 189862
OFFSET
1,1
EXAMPLE
a(4) = 303 because 303^4 = 8428892481 has 4 digits '8' and is the least number to have this property.
MAPLE
P:=proc(q, h) local a, j, k, n, t; for n from 1 to q do for k from 1 to q do
a:=convert(k^n, base, 10); t:=0; for j from 1 to nops(a) do if a[j]=h then t:=t+1; fi; od;
if t=n then print(k); break; fi; od; od; end: P(10^9, 8);
MATHEMATICA
lnx[n_]:=Module[{x=1}, While[DigitCount[x^n, 10, 8]!=n, x++]; x]; Array[lnx, 50] (* Harvey P. Dale, Jul 05 2023 *)
CROSSREFS
Sequence in context: A163191 A241708 A317119 * A068173 A069635 A069620
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Apr 19 2017
STATUS
approved