login
A292316
Oblong numbers equidistant from two other oblong numbers.
4
6, 42, 56, 72, 156, 306, 342, 380, 420, 506, 650, 702, 756, 930, 1056, 1332, 1406, 1806, 1892, 1980, 2070, 2256, 2352, 2550, 2756, 2970, 3080, 3192, 3306, 3422, 3540, 3782, 3906, 4556, 4692, 5112, 5256, 5550, 5852, 6006, 6162, 6320, 6806, 7140, 7482, 7656, 8190, 8372, 8556, 8742
OFFSET
1,1
COMMENTS
Oblong numbers (A002378) that are the arithmetic mean of two other oblong numbers. - R. J. Mathar, Oct 05 2017
FORMULA
a(n) = A292314(n)/3.
EXAMPLE
6 = 2*3 is an oblong number and equidistant from 12 = 3*4 and 0 = 0*1.
342 = 18*19 is oblong number and equidistant from 132 = 11*12 and 552 = 23*24 (552-342 = 210; 342-132 = 210).
MATHEMATICA
o[n_] := n(n+1); s[x_] := Reduce[ x+k == o[y] && x-k == o[z] && k>0 && z>0, {z, y, k}, Integers]; Select[o@ Range@ 93, s[#] =!= False &] (* Giovanni Resta, Sep 18 2017 *)
PROG
(PARI) t=2; k=2; while(t<=10^4, i=k; e=0; v=t+i; while(i>2&&e==0, if(issquare(4*v+1), e=1; print1(t, ", ")); i+=-2; v+=i); k+=2; t+=k)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antonio Roldán, Sep 14 2017
STATUS
approved