login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305787
Inverse Euler transform of (-n)^n.
2
-1, 4, -23, 223, -2800, 42599, -763220, 15734388, -366715248, 9533820200, -273549419552, 8586984241870, -292755986184548, 10772849584162694, -425587711650564816, 17966217346985801150, -807152054953801845760, 38451365602113718874568, -1936082850634342992601636
OFFSET
1,2
LINKS
N. J. A. Sloane, Transforms
FORMULA
Product_{k>=1} 1/(1-x^k)^{a(k)} = Sum_{n>=0} (-n * x)^n.
a(n) ~ (-1)^n * n^n. - Vaclav Kotesovec, Oct 09 2019
EXAMPLE
(1-x) * (1-x^2)^(-4) * (1-x^3)^23 * (1-x^4)^(-223) * ... = 1 - x + 4*x^2 - 27*x^3 + 256*x^4 - ... .
CROSSREFS
Sequence in context: A105747 A099692 A283499 * A295234 A306152 A292312
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 10 2018
STATUS
approved