OFFSET
0,3
COMMENTS
FORMULA
a(n) = sum_{k=1..n} (-1)^k F(2k)^2.
Closed form: a(n) = (-1)^n (L(4n+2) - 3)/15.
Factored closed form: a(n) = (-1)^n (1/3) F(n) L(n) F(n+1) L(n+1) = (-1)^n (1/3) F(2n) F(2n+2).
Recurrence: a(n) + 8 a(n-1) + 8 a(n-2) + a(n-3) = 0.
G.f.: A(x) = -x/(1 + 8 x + 8 x^2 + x^3) = -x/((1 + x)(1 + 7 x + x^2)).
MATHEMATICA
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[2k]^2, {k, 1, n} ], Sum[ -(-1)^k Fibonacci[-2k]^2, {k, 1, -n - 1} ] ]
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Stuart Clary, Feb 04 2009
STATUS
approved