login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156088
Alternating sum of the squares of the first n even-indexed Fibonacci numbers.
3
0, -1, 8, -56, 385, -2640, 18096, -124033, 850136, -5826920, 39938305, -273741216, 1876250208, -12860010241, 88143821480, -604146740120, 4140883359361, -28382036775408, 194533374068496, -1333351581704065, 9138927697859960
OFFSET
0,3
COMMENTS
Apart from signs, same as A092521.
Natural bilateral extension (brackets mark index 0): ..., 2640, -385, 56, -8, 1, 0, [0], -1, 8, -56, 385, -2640, 18096, ... This is (-A156088)-reversed followed by A156088. That is, A156088(-n) = -A156088(n-1).
FORMULA
Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = sum_{k=1..n} (-1)^k F(2k)^2.
Closed form: a(n) = (-1)^n (L(4n+2) - 3)/15.
Factored closed form: a(n) = (-1)^n (1/3) F(n) L(n) F(n+1) L(n+1) = (-1)^n (1/3) F(2n) F(2n+2).
Recurrence: a(n) + 8 a(n-1) + 8 a(n-2) + a(n-3) = 0.
G.f.: A(x) = -x/(1 + 8 x + 8 x^2 + x^3) = -x/((1 + x)(1 + 7 x + x^2)).
MATHEMATICA
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[2k]^2, {k, 1, n} ], Sum[ -(-1)^k Fibonacci[-2k]^2, {k, 1, -n - 1} ] ]
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Stuart Clary, Feb 04 2009
STATUS
approved