login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156087
One ninth of the sum of the squares of the first n Fibonacci numbers with index divisible by 4.
4
0, 1, 50, 2354, 110595, 5195620, 244083556, 11466731525, 538692298134, 25307071280790, 1188893657899015, 55852694849972936, 2623887764290829000, 123266872226818990089, 5790919106896201705210, 272049931151894661154810
OFFSET
0,3
COMMENTS
Natural bilateral extension (brackets mark index 0): ..., -110595, -2354, -50, -1, 0, [0], 1, 50, 2354, 110595, 5195620, ... This is (-A156087)-reversed followed by A156087. That is, A156087(-n) = -A156087(n-1).
FORMULA
Let F(n) be the Fibonacci number A000045(n).
a(n) = sum_{k=1..n} F(4k)^2.
Closed form: a(n) = F(8n+4)/135 - (2n + 1)/45.
Recurrence: a(n) - 48 a(n-1) + 48 a(n-2) - a(n-3) = 2.
Recurrence: a(n) - 49 a(n-1) + 96 a(n-2) - 49 a(n-3) + a(n-4) = 0.
G.f.: A(x) = (x + x^2)/(1 - 49 x + 96 x^2 - 49 x^3 + x^4) = x (1 + x)/((1 - x)^2 (1 - 47 x + x^2)).
MATHEMATICA
a[n_Integer] := If[ n >= 0, Sum[ (1/9) Fibonacci[4k]^2, {k, 1, n} ], -Sum[ (1/9) Fibonacci[-4k]^2, {k, 1, -n - 1} ] ]
Accumulate[Fibonacci[4Range[0, 20]]^2]/9 (* Harvey P. Dale, Sep 22 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stuart Clary, Feb 04 2009
STATUS
approved