login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101596
G.f.: c(2*x)^4, where c(x) is the g.f. of A000108.
1
1, 8, 56, 384, 2640, 18304, 128128, 905216, 6449664, 46305280, 334721024, 2434334720, 17801072640, 130809692160, 965500108800, 7154863964160, 53214300733440, 397094950010880, 2972195534929920, 22308469918924800
OFFSET
0,2
COMMENTS
a(n) is also the number of paths in a binary tree of length 2n+3 between two vertices that are 3 steps apart. - David Koslicki, (koslicki(AT)math.psu.edu), Nov 02 2010
LINKS
FORMULA
a(n) = ((8*n+12)/(3*n+12))*((3*n+3)/(n+3))*2^n*C(n+1), where C(n) and the Catalan numbers of A000108.
Conjecture: (n+4)*a(n)-4*(3n+7)*a(n-1)+16*(2n+1)*a(n-2)=0. - R. J. Mathar, Dec 13 2011
From Benedict W. J. Irwin, Jul 12 2016: (Start)
G.f.: (1-sqrt(1-8*x)+4*x*(2*x-2+sqrt(1-8*x)))/(32*x^4).
E.g.f: E^(4*x)*(2*x*(4*x-3)*BesselI(0,4*x) + (3-4*x+ 8*x^2)* BesselI(1, 4*x))/(4*x^3). (End)
a(n) ~ 2^(3*n+5)*n^(-3/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-8z]+4z(-2+Sqrt[1-8z]+2z))/(32z^4), {z, 0, 20}], z] (* Benedict W. J. Irwin, Jul 12 2016 *)
PROG
(PARI) x='x+O('x^50); Vec((1-sqrt(1-8*x) + 4*x*(2*x-2+ sqrt(1-8*x)) )/(32*x^4)) \\ G. C. Greubel, May 24 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 08 2004
STATUS
approved