login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085687
Expansion of g.f. 8/(1+sqrt(1-8*x))^3.
2
1, 6, 36, 224, 1440, 9504, 64064, 439296, 3055104, 21498880, 152807424, 1095450624, 7911587840, 57511157760, 420459724800, 3089600348160, 22806128885760, 169033661153280, 1257467341701120, 9385880636620800, 70271680244613120, 527595313582571520
OFFSET
0,2
COMMENTS
a(n) is also the number of paths of length 2(n+1) in a binary tree between two vertices that are 2 steps apart. [David Koslicki (koslicki(AT)math.psu.edu), Nov 02 2010]
FORMULA
a(n) = 6(n+1)*2^(n-2)*Cat(n+2)/(2n+3), where Cat(n)=A000108(n). - Ralf Stephan, Mar 11 2004
G.f.: c(2x)^3, where c(x) is the g.f. of A000108; a(n)=3(n+1)2^n*Cat(n+1)/(n+3); - Paul Barry, Dec 08 2004
a(n) = (n+1) * A000257(n+1). - F. Chapoton, Feb 26 2024
D-finite with recurrence: (n+3)*a(n) -2*(5*n+7)*a(n-1) +8*(2*n-1)*a(n-2)=0. - R. J. Mathar, Nov 15 2011
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 22/49 + 808*arcsin(1/(2*sqrt(2)))/(147*sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = 26/81 + 376*arcsinh(1/(2*sqrt(2)))/243. (End)
MATHEMATICA
CoefficientList[Series[8/(1 + Sqrt[1 - 8*x])^3, {x, 0, 21}], x] (* Amiram Eldar, Mar 24 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 13 2003
STATUS
approved