login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200378
G.f. satisfies: A(x) = H(x*A(x)) where H(x) = A(x/H(x)) is the theta series of planar hexagonal lattice A_2 (A004016).
0
1, 6, 36, 222, 1446, 10116, 75924, 602256, 4958352, 41783046, 357442416, 3091766904, 26991194550, 237605649780, 2107693469880, 18826297197444, 169203629332230, 1529098507275372, 13885733651626548, 126641707880226888, 1159483975207373952, 10652962589325269040, 98187525261135608400
OFFSET
0,2
FORMULA
Let q = x*A(x), then g.f. A(x) satisfies:
(1) A(x) = 1 + 6*Sum_{n>=1} q^n/(1 + q^n + q^(2*n)).
(2) A(x) = 1 + 6*Sum_{n>=1} q^(3*n-2)/(1-q^(3*n-2)) - q^(3*n-1)/(1-q^(3*n-1)).
a(n) = [x^n] H(x)^(n+1)/(n+1) where H(x) is the g.f. of A004016.
EXAMPLE
G.f.: A(x) = 1 + 6*x + 36*x^2 + 222*x^3 + 1446*x^4 + 10116*x^5 +...
where the g.f. satisfies the series:
A(x) = 1 + 6*x*A(x)/(1 + x*A(x) + x^2*A(x)^2) + 6*x^2*A(x)^2/(1 + x^2*A(x)^2 + x^4*A(x)^4) + 6*x^3*A(x)^3/(1 + x^3*A(x)^3 + x^6*A(x)^6) +...
The g.f. satisfies: A(x) = H(x*A(x)) where H(x) = A(x/H(x)) begins:
H(x) = 1 + 6*x + 6*x^3 + 6*x^4 + 12*x^7 + 6*x^9 + 6*x^12 +...+ A004016(n)*x^n +...
so that A(x) = (1/x)*Series_Reversion(x/H(x)).
The coefficients in powers of H(x) begin:
H^1: [(1), 6, 0, 6, 6, 0, 0, 12, 0, 6, 0, 0, 6, 12, 0,...];
H^2: [1,(12), 36, 12, 84, 72, 36, 96, 180, 12, 216, 144, 84,...];
H^3: [1, 18,(108), 234, 234, 864, 756, 900, 1836, 2178, 1296,...];
H^4: [1, 24, 216, (888), 1752, 3024, 7992, 8256, 14040,...];
H^5: [1, 30, 360, 2190, (7230), 14976, 32760, 72060, 92520,...];
H^6: [1, 36, 540, 4356, 20556, (60696), 137916, 325152,...];
H^7: [1, 42, 756, 7602, 46914, 187488, (531468), 1302132,...];
H^8: [1, 48, 1008, 12144, 92784, 473760, 1706544, (4818048),...]; ...
in which the coefficients in parenthesis form initial terms of this sequence:
[1/1, 12/2, 108/3, 888/4, 7230/5, 60696/6, 531468/7, 4818048/8,...].
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+6*sum(k=1, n, x^k*A^k/(1+x^k*A^k+x^(2*k)*A^(2*k)+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+6*sum(k=1, n, (x*A)^(3*k-2)/(1-(x*A)^(3*k-2))-(x*A)^(3*k-1)/(1-(x*A)^(3*k-1)), x*O(x^n))); polcoeff(A, n)}
CROSSREFS
Cf. A004016.
Sequence in context: A218991 A351056 A166748 * A085687 A242136 A129327
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 19 2011
STATUS
approved