login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = H(x*A(x)) where H(x) = A(x/H(x)) is the theta series of planar hexagonal lattice A_2 (A004016).
0

%I #17 Mar 30 2012 18:37:32

%S 1,6,36,222,1446,10116,75924,602256,4958352,41783046,357442416,

%T 3091766904,26991194550,237605649780,2107693469880,18826297197444,

%U 169203629332230,1529098507275372,13885733651626548,126641707880226888,1159483975207373952,10652962589325269040,98187525261135608400

%N G.f. satisfies: A(x) = H(x*A(x)) where H(x) = A(x/H(x)) is the theta series of planar hexagonal lattice A_2 (A004016).

%F Let q = x*A(x), then g.f. A(x) satisfies:

%F (1) A(x) = 1 + 6*Sum_{n>=1} q^n/(1 + q^n + q^(2*n)).

%F (2) A(x) = 1 + 6*Sum_{n>=1} q^(3*n-2)/(1-q^(3*n-2)) - q^(3*n-1)/(1-q^(3*n-1)).

%F a(n) = [x^n] H(x)^(n+1)/(n+1) where H(x) is the g.f. of A004016.

%e G.f.: A(x) = 1 + 6*x + 36*x^2 + 222*x^3 + 1446*x^4 + 10116*x^5 +...

%e where the g.f. satisfies the series:

%e A(x) = 1 + 6*x*A(x)/(1 + x*A(x) + x^2*A(x)^2) + 6*x^2*A(x)^2/(1 + x^2*A(x)^2 + x^4*A(x)^4) + 6*x^3*A(x)^3/(1 + x^3*A(x)^3 + x^6*A(x)^6) +...

%e The g.f. satisfies: A(x) = H(x*A(x)) where H(x) = A(x/H(x)) begins:

%e H(x) = 1 + 6*x + 6*x^3 + 6*x^4 + 12*x^7 + 6*x^9 + 6*x^12 +...+ A004016(n)*x^n +...

%e so that A(x) = (1/x)*Series_Reversion(x/H(x)).

%e The coefficients in powers of H(x) begin:

%e H^1: [(1), 6, 0, 6, 6, 0, 0, 12, 0, 6, 0, 0, 6, 12, 0,...];

%e H^2: [1,(12), 36, 12, 84, 72, 36, 96, 180, 12, 216, 144, 84,...];

%e H^3: [1, 18,(108), 234, 234, 864, 756, 900, 1836, 2178, 1296,...];

%e H^4: [1, 24, 216, (888), 1752, 3024, 7992, 8256, 14040,...];

%e H^5: [1, 30, 360, 2190, (7230), 14976, 32760, 72060, 92520,...];

%e H^6: [1, 36, 540, 4356, 20556, (60696), 137916, 325152,...];

%e H^7: [1, 42, 756, 7602, 46914, 187488, (531468), 1302132,...];

%e H^8: [1, 48, 1008, 12144, 92784, 473760, 1706544, (4818048),...]; ...

%e in which the coefficients in parenthesis form initial terms of this sequence:

%e [1/1, 12/2, 108/3, 888/4, 7230/5, 60696/6, 531468/7, 4818048/8,...].

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+6*sum(k=1,n,x^k*A^k/(1+x^k*A^k+x^(2*k)*A^(2*k)+x*O(x^n))));polcoeff(A,n)}

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+6*sum(k=1,n, (x*A)^(3*k-2)/(1-(x*A)^(3*k-2))-(x*A)^(3*k-1)/(1-(x*A)^(3*k-1)),x*O(x^n)));polcoeff(A,n)}

%Y Cf. A004016.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 19 2011