OFFSET
0,3
FORMULA
D-finite with recurrence: n*a(n) +(n-1)*a(n-1) +(24-17*n)*a(n-2) +(41-17*n)*a(n-3) +72*(n-3)*a(n-4) +72*(n-4)*a(n-5)=0. - R. J. Mathar, Nov 17 2011
G.f. satisfies: A(x) = sqrt(1 + 2*x*A(x) + 9*x^2*A(x)^2). - Paul D. Hanna, Nov 18 2014
Let G(x) = g.f. of A200375, then g.f. A(x) satisfies:
(1) A(x) = x/Series_Reversion(x*G(x)),
(2) A(x) = G(x/A(x)) and G(x) = A(x*G(x)),
a(n) ~ 3^(n-1). - Vaclav Kotesovec, Jun 29 2013
EXAMPLE
MATHEMATICA
CoefficientList[Series[1/Sqrt[1-10x^2+x^4/(1-8x^2)]+x/(1-9x^2), {x, 0, 30}], x] (* Harvey P. Dale, Nov 19 2011 *)
PROG
(PARI) {a(n)=polcoeff(1/sqrt(1-10*x^2 + x^4/(1-8*x^2 +x*O(x^n))) + x/(1-9*x^2 +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(G=sum(m=0, n, binomial(2*m, m)/(m+1)*polcoeff(1/(1-x-2*x^2+x*O(x^m)), m)*x^m)+x*O(x^n)); polcoeff(x/serreverse(x*G), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 16 2011
STATUS
approved