login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089603
G.f.: sqrt(1/agm(1, 1-8*x)) = sqrt(o.g.f. for A081085).
5
1, 2, 8, 40, 226, 1380, 8880, 59280, 406416, 2842400, 20186752, 145119616, 1053575336, 7711639760, 56834201280, 421327859520, 3139306406850, 23494847031300, 176526280319120, 1330929290036560, 10065855468854980, 76341682531733960, 580460500453098080
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Arithmetic-geometric mean
FORMULA
a(n) ~ 2^(3*n - 1/2) / (n * sqrt(Pi*log(n))) * (1 - (gamma/2 + log(2))/log(n) + (3*gamma^2/8 + 3*log(2)*gamma/2 + 3*log(2)^2/2 - Pi^2/16) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019
MATHEMATICA
CoefficientList[Series[Sqrt[2*EllipticK[1/(1 - 1/(4*x))^2]/(Pi*(1 - 4*x))], {x, 0, 25}], x] (* Vaclav Kotesovec, Sep 26 2019 *)
nmax = 25; CoefficientList[Series[Sqrt[Hypergeometric2F1[1/2, 1/2, 1, 16*x*(1 - 4*x)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 26 2019 *)
PROG
(PARI) Vec( 1/agm(1, 1-8*x+O(x^66))^(1/2) ) \\ Joerg Arndt, Aug 14 2013
CROSSREFS
Sequence in context: A289431 A337912 A085485 * A343146 A209358 A116456
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 31 2003
STATUS
approved