login
A225037
Decimal expansion of the number Sum_{n>=1} ksexp(n,3/2)^(-1).
0
1, 6, 8, 7, 6, 3, 5, 2, 1, 5, 1, 1, 9, 1, 1, 2, 4, 6, 5, 5, 1, 8, 8, 9, 4, 9, 7, 2, 8, 2, 4, 3
OFFSET
1,2
COMMENTS
The function 'ksexp' is the n-base Kneser tetration, see references below.
REFERENCES
Hellmuth Kneser, Reelle analytische Lösungen der Gleichung phi(phi(x))=e^x und verwandter Funktionalgleichungen. J. Reine Angew. Math., 187 (1949), 56-67.
H. Trappmann & D. Kouznetsov, Uniqueness of Holomorphic Superlogarithms (2009)
EXAMPLE
1.687635215119112465518894...
PROG
(PARI) \\ Download the algorithm for ksexp (see the link)
\r kneserquiet.gp; \\ Load the algorithm
b(i)=init(i); sexp(3/2)
return(1+sumalt(i=1, 1/b(i)));
CROSSREFS
Sequence in context: A092294 A097668 A133748 * A157852 A327839 A365125
KEYWORD
nonn,cons,more
AUTHOR
Balarka Sen, Apr 25 2013
STATUS
approved