The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015950 Numbers k such that k | 4^k + 1. 17
 1, 5, 25, 125, 205, 625, 1025, 2525, 3125, 5125, 8405, 12625, 15625, 25625, 42025, 63125, 78125, 103525, 128125, 168305, 202525, 210125, 255025, 315625, 344605, 390625, 517625, 640625, 841525, 875125, 1012625, 1050625, 1275125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS From Robert Israel, Sep 14 2017: (Start) All terms except 1 are congruent to 5 mod 20. If k is a term and prime p | k, then k*p is a term. All prime factors of terms == 1 (mod 4). If p is a prime == 1 (mod 4) and the order of 4 (mod p) is 2*m where m is in the sequence, then m*p is in the sequence. (End) LINKS Max Alekseyev, Table of n, a(n) for n = 1..3514 (first 325 terms from Robert Israel) EXAMPLE 4^5 + 1 = 1025 and 1025 is divisible by 5, so 5 is a term. MAPLE select(n -> 4 &^ n + 1 mod n = 0, [1, seq(i, i=5..10^7, 20)]); # Robert Israel, Sep 14 2017 MATHEMATICA Select[Prepend[20 Range[0, 10^5] + 5, 1], Mod[4^# + 1, #] == 0 &] (* Michael De Vlieger, Dec 31 2018 *) PROG (PARI) is_A015950(n) = Mod(4, n)^n == -1; \\ Michel Marcus, Sep 15 2017 (MAGMA) [n: n in [1..10^6] | Modexp(4, n, n)+1 eq n]; // Jinyuan Wang, Dec 29 2018 (Python) A015950_list = [n for n in range(1, 10**6) if pow(4, n, n) == n-1] # Chai Wah Wu, Mar 25 2021 CROSSREFS Cf. A015945, A211349. Column k=4 of A333429. Sequence in context: A271380 A036149 A061974 * A337950 A267780 A228736 Adjacent sequences:  A015947 A015948 A015949 * A015951 A015952 A015953 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 13:09 EST 2022. Contains 350598 sequences. (Running on oeis4.)