The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337950 L.g.f.: -log( Sum_{n=-oo..+oo} (-2)^n * (2*x)^(n^2) ) = Sum_{n>=1} a(n) * x^n/n. 5
 5, 25, 125, 353, 1425, 5425, 18625, 69121, 286145, 1082625, 4250625, 17072897, 67375105, 269185025, 1079450625, 4296933377, 17185439745, 68786663425, 274902810625, 1099633590273, 4399081242625, 17592482791425, 70369226522625, 281488801333249, 1125907377946625, 4503605214183425, 18014623543066625, 72057637105041409 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..500 FORMULA L.g.f.: -log( Sum_{n>=0} (-1)^n*A337951(n) * x^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where A337951(n) = 2^(n*(n-1)) + 2^(n*(n+1)) for n>0 with A337951(0) = 1. . L.g.f.: -log( Product_{n>=1} (1 - 4^n*x^(2*n)) * (1 - 4^n*x^(2*n-1)) * (1 - 4^(n-1)*x^(2*n-1)) ) = Sum_{n>=1} a(n) * x^n/n, by the Jacobi triple product identity. L.g.f.: Sum_{n>=1} Sum_{k>=1} ( 4^(k*n)*x^(2*k*n) + (4^n+1)*4^((k-1)*n)*x^((2*k-1)*n) )/n = Sum_{n>=1} a(n) * x^n/n. a(4*n + k) = 0 (mod 5) for n >= 0, and k = 1,2,3 (conjecture). EXAMPLE L.g.f.: L(x) = 5*x + 25*x^2/2 + 125*x^3/3 + 353*x^4/4 + 1425*x^5/5 + 5425*x^6/6 + 18625*x^7/7 + 69121*x^8/8 + 286145*x^9/9 + 1082625*x^10/10 + 4250625*x^11/11 + 17072897*x^12/12 + 67375105*x^13/13 + 269185025*x^14/14 + 1079450625*x^15/15 + 4296933377*x^16/16 + ... + a(n)*x^n/n + ... where exp(-L(x)) = 1 - 5*x + 68*x^4 - 4160*x^9 + 1052672*x^16 - 1074790400*x^25 + 4399120252928*x^36 - 72061992084439040*x^49 + 4722438540463683141632*x^64 + ... + (-1)^n*A337951(n)*x^(n^2) + ... PROG (PARI) /* By Definition: */ {a(n) = n*polcoeff( -log( sum(m=-sqrtint(n+1), sqrtint(n+1), (-2)^m*(2*x)^(m^2) +x*O(x^n)) ), n)} for(n=1, 30, print1(a(n), ", ")) (PARI) /* By the Jacobi Triple Product identity: */ {a(n) = n*polcoeff( -log( prod(m=1, n\2+1, (1 - 4^m*x^(2*m)) * (1 - 4^m*x^(2*m-1)) * (1 - 4^(m-1)*x^(2*m-1)) +x*O(x^n))), n)} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A337951, A337948. Sequence in context: A036149 A061974 A015950 * A267780 A228736 A126642 Adjacent sequences:  A337947 A337948 A337949 * A337951 A337952 A337953 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 03 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 04:38 EST 2021. Contains 349626 sequences. (Running on oeis4.)