login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337950 L.g.f.: -log( Sum_{n=-oo..+oo} (-2)^n * (2*x)^(n^2) ) = Sum_{n>=1} a(n) * x^n/n. 5
5, 25, 125, 353, 1425, 5425, 18625, 69121, 286145, 1082625, 4250625, 17072897, 67375105, 269185025, 1079450625, 4296933377, 17185439745, 68786663425, 274902810625, 1099633590273, 4399081242625, 17592482791425, 70369226522625, 281488801333249, 1125907377946625, 4503605214183425, 18014623543066625, 72057637105041409 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..500

FORMULA

L.g.f.: -log( Sum_{n>=0} (-1)^n*A337951(n) * x^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where A337951(n) = 2^(n*(n-1)) + 2^(n*(n+1)) for n>0 with A337951(0) = 1. .

L.g.f.: -log( Product_{n>=1} (1 - 4^n*x^(2*n)) * (1 - 4^n*x^(2*n-1)) * (1 - 4^(n-1)*x^(2*n-1)) ) = Sum_{n>=1} a(n) * x^n/n, by the Jacobi triple product identity.

L.g.f.: Sum_{n>=1} Sum_{k>=1} ( 4^(k*n)*x^(2*k*n) + (4^n+1)*4^((k-1)*n)*x^((2*k-1)*n) )/n = Sum_{n>=1} a(n) * x^n/n.

a(4*n + k) = 0 (mod 5) for n >= 0, and k = 1,2,3 (conjecture).

EXAMPLE

L.g.f.: L(x) = 5*x + 25*x^2/2 + 125*x^3/3 + 353*x^4/4 + 1425*x^5/5 + 5425*x^6/6 + 18625*x^7/7 + 69121*x^8/8 + 286145*x^9/9 + 1082625*x^10/10 + 4250625*x^11/11 + 17072897*x^12/12 + 67375105*x^13/13 + 269185025*x^14/14 + 1079450625*x^15/15 + 4296933377*x^16/16 + ... + a(n)*x^n/n + ...

where

exp(-L(x)) = 1 - 5*x + 68*x^4 - 4160*x^9 + 1052672*x^16 - 1074790400*x^25 + 4399120252928*x^36 - 72061992084439040*x^49 + 4722438540463683141632*x^64 + ... + (-1)^n*A337951(n)*x^(n^2) + ...

PROG

(PARI) /* By Definition: */

{a(n) = n*polcoeff( -log( sum(m=-sqrtint(n+1), sqrtint(n+1), (-2)^m*(2*x)^(m^2) +x*O(x^n)) ), n)}

for(n=1, 30, print1(a(n), ", "))

(PARI) /* By the Jacobi Triple Product identity: */

{a(n) = n*polcoeff( -log( prod(m=1, n\2+1, (1 - 4^m*x^(2*m)) * (1 - 4^m*x^(2*m-1)) * (1 - 4^(m-1)*x^(2*m-1)) +x*O(x^n))), n)}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Cf. A337951, A337948.

Sequence in context: A036149 A061974 A015950 * A267780 A228736 A126642

Adjacent sequences:  A337947 A337948 A337949 * A337951 A337952 A337953

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 03 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 04:38 EST 2021. Contains 349626 sequences. (Running on oeis4.)