login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337948
L.g.f.: -log( Sum_{n=-oo..+oo} (-p)^n * (p*x)^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where p = sqrt(2).
5
3, 9, 27, 41, 93, 189, 297, 481, 1161, 1809, 3105, 6449, 10689, 20673, 44577, 73217, 144129, 299457, 553473, 1107201, 2243457, 4299777, 8529921, 17203969, 34030593, 67604481, 136001025, 269709313, 538296321, 1081023489, 2150531073, 4299030529, 8612255745, 17190158337, 34391638017, 68800294913
OFFSET
1,1
LINKS
FORMULA
L.g.f.: -log( Sum_{n>=0} (-1)^n*A337949(n) * x^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where A337949(n) = 2^(n*(n-1)/2) + 2^(n*(n+1)/2) for n>0 with A337949(0) = 1.
L.g.f.: -log( Product_{n>=1} (1 - 2^n*x^(2*n)) * (1 - 2^n*x^(2*n-1)) * (1 - 2^(n-1)*x^(2*n-1)) ) = Sum_{n>=1} a(n) * x^n/n, by the Jacobi triple product identity.
L.g.f.: Sum_{n>=1} Sum_{k>=1} ( 2^(k*n)*x^(2*k*n) + (2^n+1)*2^((k-1)*n)*x^((2*k-1)*n) )/n = Sum_{n>=1} a(n) * x^n/n.
a(2*n+k) = 0 (mod 3) for n >= 0, and k = 1,2,3 (conjecture).
EXAMPLE
L.g.f.: L(x) = 3*x + 9*x^2/2 + 27*x^3/3 + 41*x^4/4 + 93*x^5/5 + 189*x^6/6 + 297*x^7/7 + 481*x^8/8 + 1161*x^9/9 + 1809*x^10/10 + 3105*x^11/11 + 6449*x^12/12 + 10689*x^13/13 + 20673*x^14/14 + 44577*x^15/15 + 73217*x^16/16 + ... + a(n)*x^n/n + ...
where
exp(-L(x)) = 1 - 3*x + 10*x^4 - 72*x^9 + 1088*x^16 - 33792*x^25 + 2129920*x^36 - 270532608*x^49 + 68987912192*x^64 + ... + (-1)^n*A337949(n)*x^(n^2) + ...
PROG
(PARI) /* By Definition: */
{a(n) = n*polcoeff( -log( sum(m=-sqrtint(n+1), sqrtint(n+1), (-1)^m*2^(m*(m+1)/2)*x^(m^2) +x*O(x^n)) ), n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) /* By the Jacobi Triple Product identity: */
{a(n) = n*polcoeff( -log( prod(m=1, n\2+1, (1 - 2^m*x^(2*m)) * (1 - 2^m*x^(2*m-1)) * (1 - 2^(m-1)*x^(2*m-1)) +x*O(x^n))), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A070361 A056024 A116475 * A163791 A248078 A057829
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2020
STATUS
approved