The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337948 L.g.f.: -log( Sum_{n=-oo..+oo} (-p)^n * (p*x)^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where p = sqrt(2). 5
 3, 9, 27, 41, 93, 189, 297, 481, 1161, 1809, 3105, 6449, 10689, 20673, 44577, 73217, 144129, 299457, 553473, 1107201, 2243457, 4299777, 8529921, 17203969, 34030593, 67604481, 136001025, 269709313, 538296321, 1081023489, 2150531073, 4299030529, 8612255745, 17190158337, 34391638017, 68800294913 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..900 FORMULA L.g.f.: -log( Sum_{n>=0} (-1)^n*A337949(n) * x^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where A337949(n) = 2^(n*(n-1)/2) + 2^(n*(n+1)/2) for n>0 with A337949(0) = 1. L.g.f.: -log( Product_{n>=1} (1 - 2^n*x^(2*n)) * (1 - 2^n*x^(2*n-1)) * (1 - 2^(n-1)*x^(2*n-1)) ) = Sum_{n>=1} a(n) * x^n/n, by the Jacobi triple product identity. L.g.f.: Sum_{n>=1} Sum_{k>=1} ( 2^(k*n)*x^(2*k*n) + (2^n+1)*2^((k-1)*n)*x^((2*k-1)*n) )/n = Sum_{n>=1} a(n) * x^n/n. a(2*n+k) = 0 (mod 3) for n >= 0, and k = 1,2,3 (conjecture). EXAMPLE L.g.f.: L(x) = 3*x + 9*x^2/2 + 27*x^3/3 + 41*x^4/4 + 93*x^5/5 + 189*x^6/6 + 297*x^7/7 + 481*x^8/8 + 1161*x^9/9 + 1809*x^10/10 + 3105*x^11/11 + 6449*x^12/12 + 10689*x^13/13 + 20673*x^14/14 + 44577*x^15/15 + 73217*x^16/16 + ... + a(n)*x^n/n + ... where exp(-L(x)) = 1 - 3*x + 10*x^4 - 72*x^9 + 1088*x^16 - 33792*x^25 + 2129920*x^36 - 270532608*x^49 + 68987912192*x^64 + ... + (-1)^n*A337949(n)*x^(n^2) + ... PROG (PARI) /* By Definition: */ {a(n) = n*polcoeff( -log( sum(m=-sqrtint(n+1), sqrtint(n+1), (-1)^m*2^(m*(m+1)/2)*x^(m^2) +x*O(x^n)) ), n)} for(n=1, 30, print1(a(n), ", ")) (PARI) /* By the Jacobi Triple Product identity: */ {a(n) = n*polcoeff( -log( prod(m=1, n\2+1, (1 - 2^m*x^(2*m)) * (1 - 2^m*x^(2*m-1)) * (1 - 2^(m-1)*x^(2*m-1)) +x*O(x^n))), n)} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A337949, A337950. Sequence in context: A070361 A056024 A116475 * A163791 A248078 A057829 Adjacent sequences:  A337945 A337946 A337947 * A337949 A337950 A337951 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 03 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 05:12 EST 2021. Contains 349419 sequences. (Running on oeis4.)