login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337953
Number of achiral colorings of the 30 edges of a regular dodecahedron or icosahedron using n or fewer colors.
6
1, 33328, 32524281, 4312863360, 191243490675, 4239501280272, 58236754527707, 563536359633920, 4172726943804861, 25016666666700400, 126431377927701253, 554909560378102656, 2163457078062360639, 7625429483925609552, 24638829565429941975
OFFSET
1,2
COMMENTS
An achiral coloring is identical to its reflection. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual.
There are 60 elements in the automorphism group of the regular dodecahedron/icosahedron that are not in the rotation group. They divide into five conjugacy classes. The first formula is obtained by averaging the edge cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Odd Cycle Indices
Inversion 1 x_2^15
Edge rotation* 15 x_1^4x_2^13 Asterisk indicates that the
Vertex rotation* 20 x_6^5 operation is followed by an
Small face rotation* 12 x_10^3 inversion.
Large face rotation* 12 x_10^3
LINKS
Index entries for linear recurrences with constant coefficients, signature (18, -153, 816, -3060, 8568, -18564, 31824, -43758, 48620, -43758, 31824, -18564, 8568, -3060, 816, -153, 18, -1).
FORMULA
a(n) = n^3 * (15*n^14 + n^12 + 20*n^2 + 24) / 60.
a(n) = 1*C(n,1) + 33326*C(n,2) + 32424300*C(n,3) + 4182966200*C(n,4) + 170004083410*C(n,5) + 3156083300916*C(n,6) + 32426546302332*C(n,7) + 205938803790720*C(n,8) + 864860752435680*C(n,9) + 2503126577952000*C(n,10) + 5110943178781440*C(n,11) + 7428048096268800*C(n,12) + 7644417350169600*C(n,13) + 5446616304729600*C(n,14) + 2556525184012800*C(n,15) + 711374856192000*C(n,16) + 88921857024000*C(n,17), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n) = 2*A337963(n) - A282670(n) = A282670(n) - 2*A337964(n) = A337963(n) - A337964(n).
MATHEMATICA
Table[(15n^17+n^15+20n^5+24n^3)/60, {n, 30}]
CROSSREFS
Cf. A282670 (oriented), A337963 (unoriented), A337964 (chiral).
Other elements: A337960 (dodecahedron vertices, icosahedron faces), A337962 (dodecahedron faces, icosahedron vertices).
Cf. A037270 (tetrahedron), A331351 (cube/octahedron).
Sequence in context: A170798 A043628 A205410 * A210720 A233751 A205212
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Oct 03 2020
STATUS
approved