login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337964
Number of chiral pairs of colorings of the 30 edges of a regular dodecahedron or icosahedron using n or fewer colors.
5
0, 8939560, 1715748562809, 9607677585671872, 7761021378582359350, 1842282662572342834488, 187827835730804603558945, 10316166993798251995440640, 353259652291613627252061348
OFFSET
1,2
COMMENTS
Each member of a chiral pair is a reflection, but not a rotation, of the other. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual.
LINKS
Index entries for linear recurrences with constant coefficients, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1).
FORMULA
a(n) = (n^30 - 15*n^17 + 15*n^16 - n^15 + 20*n^10 + 24*n^6 - 20*n^5 - 24*n^3) / 120.
a(n) = 8939560*C(n,2) + 1715721744129*C(n,3) + 9600814645057996*C(n,4) + 7713000148050232480*C(n,5) + 1795860615149796593688*C(n,6) + 175094502333083946715914*C(n,7) + 8864694277747989482032560*C(n,8) + 267022176368352696363194640*C(n,9) + 5242809910438322709320514240*C(n,10) + 71533267863137818750780447680*C(n,11) + 710438037081549637823404041600*C(n,12) + 5315930749209804729425000380800*C(n,13) + 30757743469720886648597337369600*C(n,14) + 140355611183197552206530379513600*C(n,15) + 512749946932635113438921952768000*C(n,16) + 1516429386147442831718766368256000*C(n,17) + 3659586727743885232600161343488000*C(n,18) + 7243809192262705479647976345600000*C(n,19) + 11790166608014659213935198412800000*C(n,20) + 15777861864770715186138442260480000*C(n,21) + 17309780658863308912305163714560000*C(n,22) + 15473267984805657314364466790400000*C(n,23) + 11155559298200256484274739609600000*C(n,24) + 6385716995478673633837056000000000*C(n,25) + 2834140845518322325537731379200000*C(n,26) + 939989821959452064042418176000000*C(n,27) + 219202016094796777623060480000000*C(n,28) + 32051387227306419585220608000000*C(n,29) + 2210440498434925488635904000000*C(n,30), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n) = A282670(n) - A337963(n) = (A282670(n) - A337953(n)) / 2 = A337963(n) - A337953(n).
MATHEMATICA
Table[(n^30-15n^17+15n^16-n^15+20n^10+24n^6-20n^5-24n^3)/120, {n, 30}]
CROSSREFS
Cf. A282670 (oriented), A337963 (unoriented), A337953 (achiral).
Other elements: A337959 (dodecahedron vertices, icosahedron faces), A337961 (dodecahedron faces, icosahedron vertices).
Other polyhedra: A337899 (tetrahedron), A337406 (cube/octahedron).
Sequence in context: A141645 A217655 A151933 * A233492 A251157 A337963
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Oct 03 2020
STATUS
approved