Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 09 2024 11:30:08
%S 0,8939560,1715748562809,9607677585671872,7761021378582359350,
%T 1842282662572342834488,187827835730804603558945,
%U 10316166993798251995440640,353259652291613627252061348
%N Number of chiral pairs of colorings of the 30 edges of a regular dodecahedron or icosahedron using n or fewer colors.
%C Each member of a chiral pair is a reflection, but not a rotation, of the other. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual.
%H <a href="/index/Rec#order_31">Index entries for linear recurrences with constant coefficients</a>, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1).
%F a(n) = (n^30 - 15*n^17 + 15*n^16 - n^15 + 20*n^10 + 24*n^6 - 20*n^5 - 24*n^3) / 120.
%F a(n) = 8939560*C(n,2) + 1715721744129*C(n,3) + 9600814645057996*C(n,4) + 7713000148050232480*C(n,5) + 1795860615149796593688*C(n,6) + 175094502333083946715914*C(n,7) + 8864694277747989482032560*C(n,8) + 267022176368352696363194640*C(n,9) + 5242809910438322709320514240*C(n,10) + 71533267863137818750780447680*C(n,11) + 710438037081549637823404041600*C(n,12) + 5315930749209804729425000380800*C(n,13) + 30757743469720886648597337369600*C(n,14) + 140355611183197552206530379513600*C(n,15) + 512749946932635113438921952768000*C(n,16) + 1516429386147442831718766368256000*C(n,17) + 3659586727743885232600161343488000*C(n,18) + 7243809192262705479647976345600000*C(n,19) + 11790166608014659213935198412800000*C(n,20) + 15777861864770715186138442260480000*C(n,21) + 17309780658863308912305163714560000*C(n,22) + 15473267984805657314364466790400000*C(n,23) + 11155559298200256484274739609600000*C(n,24) + 6385716995478673633837056000000000*C(n,25) + 2834140845518322325537731379200000*C(n,26) + 939989821959452064042418176000000*C(n,27) + 219202016094796777623060480000000*C(n,28) + 32051387227306419585220608000000*C(n,29) + 2210440498434925488635904000000*C(n,30), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
%F a(n) = A282670(n) - A337963(n) = (A282670(n) - A337953(n)) / 2 = A337963(n) - A337953(n).
%t Table[(n^30-15n^17+15n^16-n^15+20n^10+24n^6-20n^5-24n^3)/120,{n,30}]
%Y Cf. A282670 (oriented), A337963 (unoriented), A337953 (achiral).
%Y Other elements: A337959 (dodecahedron vertices, icosahedron faces), A337961 (dodecahedron faces, icosahedron vertices).
%Y Other polyhedra: A337899 (tetrahedron), A337406 (cube/octahedron).
%K nonn,easy
%O 1,2
%A _Robert A. Russell_, Oct 03 2020