login
A282670
Number of inequivalent ways to color the edges of a dodecahedron using at most n colors.
6
0, 1, 17912448, 3431529649899, 19215359484207104, 15522042948408209375, 3684565329384186949248, 375655671519845961645597, 20632333988160040350515200, 706519304587399981447927557, 16666666666669166670000400000, 290823371148118276083759139095
OFFSET
0,3
COMMENTS
Cycle index of symmetry group A5 acting on the 30 edges of the dodecahedron is (24s(5)^6 + 20s(3)^10 + 15s(2)^14*s(1)^2 + s(1)^30)/60.
Also the number of inequivalent ways to color the edges of the icosahedron using at most n colors.
From Robert A. Russell, Oct 03 2020: (Start)
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual. There are 60 elements in the rotation group of the regular dodecahedron/icosahedron. They divide into five conjugacy classes. The first formula is obtained by averaging the edge cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Conjugacy Class Count Even Cycle Indices
Identity 1 x_1^30
Edge rotation 15 x_1^2x_2^14
Vertex rotation 20 x_3^10
Small face rotation 12 x_5^6
Large face rotation 12 x_5^6 (End)
LINKS
Index entries for linear recurrences with constant coefficients, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1).
FORMULA
a(n) = n^6 (n^24 + 15 n^10 + 20 n^4 + 24)/60.
G.f.: x*(1 + x)*(1 + 17912416*x + 3430956452060*x^2 + 19105559437892000*x^3 + 14908856825730677891*x^4 + 3197392859155796794496*x^5 + 265368238349945588707496*x^6 + 10365795256050146806088576*x^7 + 215154060506484358838662001*x^8 + 2568188846096433625477331936*x^9 + 18582986600475456162494990756*x^10 + 84400699070086923625163495456*x^11 + 245956255494355672481225103371*x^12 + 465612713610802763378946154496*x^13 + 575747234318647571242943474096*x^14 + 465612713610802763378946154496*x^15 + 245956255494355672481225103371*x^16 + 84400699070086923625163495456*x^17 + 18582986600475456162494990756*x^18 + 2568188846096433625477331936*x^19 + 215154060506484358838662001*x^20 + 10365795256050146806088576*x^21 + 265368238349945588707496*x^22 + 3197392859155796794496*x^23 + 14908856825730677891*x^24 + 19105559437892000*x^25 + 3430956452060*x^26 + 17912416*x^27 + x^28) / (1 - x)^31. - Colin Barker, Mar 30 2019
From Robert A. Russell, Oct 03 2020: (Start)
a(n) = 1*C(n,1) + 17912446*C(n,2) + 3431475912558*C(n,3) + 19201633473082192*C(n,4) + 15426000466104548370*C(n,5) + 3591721233455676488292*C(n,6) + 350189004698594439734160*C(n,7) + 17729388555701917767855840*C(n,8) + 534044352737570253478824960*C(n,9) + 10485619820879148545218980480*C(n,10) + 143066535726280748444739676800*C(n,11) + 1420876074163106703694904352000*C(n,12) + 10631861498419617103267350931200*C(n,13) + 61515486939441778743810979468800*C(n,14) + 280711222366395106969585943040000*C(n,15) + 1025499893865270227589218761728000*C(n,16) + 3032858772294885663526454593536000*C(n,17) + 7319173455487770465200322686976000*C(n,18) + 14487618384525410959295952691200000*C(n,19) + 23580333216029318427870396825600000*C(n,20) + 31555723729541430372276884520960000*C(n,21) + 34619561317726617824610327429120000*C(n,22) + 30946535969611314628728933580800000*C(n,23) + 22311118596400512968549479219200000*C(n,24) + 12771433990957347267674112000000000*C(n,25) + 5668281691036644651075462758400000*C(n,26) + 1879979643918904128084836352000000*C(n,27) + 438404032189593555246120960000000*C(n,28) + 64102774454612839170441216000000*C(n,29) + 4420880996869850977271808000000*C(n,30), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A337963(n) + A337964(n) = 2*A337963(n) - A337953(n) = 2*A337964(n) + A337953(n). (End)
EXAMPLE
There are a(2) = 17912448 inequivalent ways to color the edges of the dodecahedron using at most two colors.
MATHEMATICA
Table[(24n^6+20n^10+15n^16+n^30)/60, {n, 0, 16}]
CROSSREFS
Other elements: A054472 (dodecahedron vertices, icosahedron faces), A000545 (dodecahedron faces, icosahedron vertices).
Other polyhedra: A046023 (tetrahedron), A060530 (cube/octahedron).
Cf. A337963 (unoriented), A337964 (chiral), A337953 (achiral).
Sequence in context: A015353 A083619 A257550 * A238071 A271445 A073032
KEYWORD
easy,nonn
AUTHOR
David Nacin, Feb 20 2017
STATUS
approved