login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000545 Number of ways of n-coloring a dodecahedron. 8
1, 96, 9099, 280832, 4073375, 36292320, 230719293, 1145393152, 4707296613, 16666924000, 52307593239, 148602435840, 388302646355, 944900450144, 2162441849625, 4691253854208, 9710376716137, 19280531603808, 36888593841475, 68266682784000, 122597146773927 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

More explicitly, a(n) is the number of colorings with at most n colors of the faces of a regular dodecahedron, inequivalent under the action of the rotation group of the dodecahedron. It is also the number of inequivalent colorings of the vertices of a regular icosahedron using at most n colors. - José H. Nieto S., Jan 19 2012

From Robert A. Russell, Oct 03 2020: (Start)

Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual. There are 60 elements in the rotation group of the regular dodecahedron/icosahedron. They divide into five conjugacy classes. The first formula is obtained by averaging the dodecahedron face (icosahedron vertex) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.

  Conjugacy Class    Count    Even Cycle Indices

  Identity              1     x_1^12

  Edge rotation        15     x_2^6

  Vertex rotation      20     x_3^4

  Small face rotation  12     x_1^2x_5^2

  Large face rotation  12     x_1^2x_5^2  (End)

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Polyhedron Coloring

FORMULA

G.f.: x*((1+x)*(1+x*(82+x*(7847+x*(161900+x*(943640+x*(1764740+x*(943640+x*(161900+x*(7847+x*(82+x)))))))))))/(1-x)^13. - Harvey P. Dale, Apr 25 2011

From Robert A. Russell, Oct 03 2020: (Start)

a(n) = (n^12 + 15*n^6 + 44*n^4) / 60.

a(n) = 1*C(n,1) + 94*C(n,2) + 8814*C(n,3) + 245008*C(n,4) + 2759250*C(n,5) + 15884004*C(n,6) + 52701264*C(n,7) + 106866144*C(n,8) + 134719200*C(n,9) + 103118400*C(n,10) + 43908480*C(n,11) + 7983360*C(n,12), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.

a(n) = A252705(n) + A337961(n) = 2*A252705(n) - A337962(n) = 2*A337961(n) + A337962(n). (End)

MAPLE

(1/60)*n^12+(1/4)*n^6+(11/15)*n^4;

MATHEMATICA

Table[n^12/60+n^6/4+11 n^4/15, {n, 20}] (* or *) CoefficientList[Series[ -(((1+x) (1+x (82+x (7847+x (161900+x (943640+x (1764740+x (943640+x (161900+x (7847+x (82+x)))))))))))/(x-1)^13), {x, 0, 20}], x] (* Harvey P. Dale, Apr 25 2011 *)

CROSSREFS

Cf. A252705 (unoriented), A337961 (chiral), A337962 (achiral).

Other elements: A054472 (dodecahedron vertices, icosahedron faces), A282670 (edges).

Other polyhedra: A006008 (tetrahedron), A047780 (cube faces, octahedron vertices), A000543 (octahedron faces, cube vertices).

Sequence in context: A093248 A299856 A270603 * A189909 A189903 A189159

Adjacent sequences:  A000542 A000543 A000544 * A000546 A000547 A000548

KEYWORD

nonn,easy

AUTHOR

Clint. C. Williams (Clintwill(AT)aol.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 21:30 EDT 2021. Contains 348119 sequences. (Running on oeis4.)