The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337959 Number of chiral pairs of colorings of the 30 triangular faces of a regular icosahedron or the 30 vertices of a regular dodecahedron using n or fewer colors. 4
 0, 8388, 28998090, 9160633008, 794699283870, 30467722237092, 664933856235516, 9607670743188672, 101313843935748516, 833333209516666980, 5606249568529546134, 31947998829845093424, 158374695227965468434 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Each member of a chiral pair is a reflection, but not a rotation, of the other. The Schläfli symbols for the regular icosahedron and regular dodecahedron are {3,5} and {5,3} respectively. They are mutually dual. LINKS Table of n, a(n) for n=1..13. Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1). FORMULA a(n) = (n-1) * n^2 * (n+1) * (n^2+2) * (n^14 - n^12 + 3*n^10 - 5*n^8 - 4*n^6 + 8*n^4 + 4*n^2 + 12) /120. a(n) = 8388*C(n,2) + 28972926*C(n,3) + 9044690976*C(n,4) + 749186015850*C(n,5) + 25836356193012*C(n,6) + 468028878138864*C(n,7) + 5097432576698784*C(n,8) + 36322117709159520*C(n,9) + 178947768558202560*C(n,10) + 632296225414909440*C(n,11) + 1640646875114311680*C(n,12) + 3168965153453299200*C(n,13) + 4578694359419980800*C(n,14) + 4929160839482880000*C(n,15) + 3897035952819609600*C(n,16) + 2197214626134528000*C(n,17) + 836310065310720000*C(n,18) + 192604742313984000*C(n,19) + 20274183401472000*C(n,20), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors. a(n) = A054472(n) - A252704(n) = (A054472(n) - A337960(n)) / 2 = A252704(n) - A337960(n). MATHEMATICA Table[(n^20-15n^12+14n^10+20n^8+4n^4-24n^2)/120, {n, 30}] CROSSREFS Cf. A054472 (oriented), A252704 (unoriented), A337960 (achiral). Other elements: A337964 (edges), A337961 (dodecahedron faces, icosahedron vertices). Other polyhedra: A000332 (tetrahedron), A093566(n+1) (cube faces, octahedron vertices), A337896 (octahedron faces, cube vertices). Sequence in context: A031947 A069402 A202588 * A139005 A252087 A253836 Adjacent sequences: A337956 A337957 A337958 * A337960 A337961 A337962 KEYWORD nonn,easy AUTHOR Robert A. Russell, Oct 03 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 04:52 EDT 2024. Contains 372782 sequences. (Running on oeis4.)