login
A351983
Number of integer compositions of n with exactly one part above the diagonal.
5
0, 0, 1, 2, 5, 9, 18, 35, 67, 131, 257, 505, 996, 1973, 3915, 7781, 15486, 30855, 61527, 122764, 245069, 489412, 977673, 1953515, 3904108, 7803545, 15599618, 31187269, 62355347, 124679883, 249310255, 498540890, 996953659, 1993701032, 3987069747, 7973603891
OFFSET
0,4
LINKS
EXAMPLE
The a(2) = 1 through a(6) = 18 compositions:
(2) (3) (4) (5) (6)
(21) (13) (14) (15)
(22) (32) (42)
(31) (41) (51)
(211) (131) (114)
(212) (132)
(221) (141)
(311) (213)
(2111) (222)
(312)
(321)
(411)
(1311)
(2112)
(2121)
(2211)
(3111)
(21111)
MATHEMATICA
pless[y_]:=Length[Select[Range[Length[y]], #<y[[#]]&]];
Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n], pless[#]==1&]], {n, 0, 10}]
PROG
(PARI)
S(v, u, c=0)={vector(#v, k, c + sum(i=1, k-1, v[k-i]*u[i]))}
seq(n)={my(v=vector(1+n), s=0); v[1]=1; for(i=1, n, v=S(v, vector(n, j, if(j>i, 'x, 1)), O(x^2)); s+=apply(p->polcoef(p, 1), v)); s} \\ Andrew Howroyd, Jan 02 2023
CROSSREFS
The version for permutations is A000295, weak A057427.
The version for partitions is A002620, weak A001477.
The weak version is A177510.
The version for fixed points is A240736, nonfixed A352520.
This is column k = 1 of A352524; column k = 0 is A008930.
A238349 counts compositions by fixed points, first column A238351.
A352521 counts compositions by strong nonexcedances, first column A219282.
A352522 counts compositions by weak nonexcedances, first column A238874.
A352523 counts compositions by nonfixed points, first column A010054.
A352524 counts compositions by strong excedances, first column A008930.
A352525 counts compositions by weak excedances, first column A177510.
Sequence in context: A117353 A103422 A217210 * A247322 A348473 A097281
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 02 2022
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Jan 02 2023
STATUS
approved