login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177510 Number of compositions (p0, p1, p2, ...) of n with pi - p0 <= i and pi >= p0. 4
1, 1, 2, 3, 5, 8, 14, 25, 46, 87, 167, 324, 634, 1248, 2466, 4887, 9706, 19308, 38455, 76659, 152925, 305232, 609488, 1217429, 2432399, 4860881, 9715511, 19421029, 38826059, 77626471, 155211785, 310357462, 620608652, 1241046343, 2481817484, 4963191718, 9925669171, 19850186856, 39698516655, 79394037319 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(0)=1, otherwise row sums of A179748.

For n>=1 cumulative sums of A008930.

a(n) is proportional to A048651*A000079. The error (a(n)-A048651*A000079) divided by sequence A186425 tends to the golden ratio A001622. This can be seen when using about 1000 decimals of the constant A048651 = 0.2887880950866024212... - [Mats Granvik, Jan 01 2015]

LINKS

Table of n, a(n) for n=0..39.

FORMULA

G.f.: 1 + q/(1-q) * sum(n>=0, q^n * prod(k=1..n, (1-q^k)/(1-q) ) ). [Joerg Arndt, Mar 24 2014]

EXAMPLE

From Joerg Arndt, Mar 24 2014: (Start)

The a(7) = 25 such compositions are:

01:  [ 1 1 1 1 1 1 1 ]

02:  [ 1 1 1 1 1 2 ]

03:  [ 1 1 1 1 2 1 ]

04:  [ 1 1 1 1 3 ]

05:  [ 1 1 1 2 1 1 ]

06:  [ 1 1 1 2 2 ]

07:  [ 1 1 1 3 1 ]

08:  [ 1 1 1 4 ]

09:  [ 1 1 2 1 1 1 ]

10:  [ 1 1 2 1 2 ]

11:  [ 1 1 2 2 1 ]

12:  [ 1 1 2 3 ]

13:  [ 1 1 3 1 1 ]

14:  [ 1 1 3 2 ]

15:  [ 1 2 1 1 1 1 ]

16:  [ 1 2 1 1 2 ]

17:  [ 1 2 1 2 1 ]

18:  [ 1 2 1 3 ]

19:  [ 1 2 2 1 1 ]

20:  [ 1 2 2 2 ]

21:  [ 1 2 3 1 ]

22:  [ 2 2 3 ]

23:  [ 2 3 2 ]

24:  [ 3 4 ]

25:  [ 7 ]

(End)

MAPLE

A179748 := proc(n, k) option remember; if k= 1 then 1; elif k> n then 0 ; else add( procname(n-i, k-1), i=1..k-1) ; end if; end proc:

A177510 := proc(n) add(A179748(n, k), k=1..n) ; end proc:

seq(A177510(n), n=1..20) ; # R. J. Mathar, Dec 14 2010

MATHEMATICA

Clear[t, nn]; nn = 39; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}], 0]; Table[Sum[t[n, k], {k, 1, n}], {n, 1, nn}] (* Mats Granvik, Jan 01 2015 *)

PROG

(Sage)

@CachedFunction

def T(n, k): # A179748

    if n == 0:  return int(k==0);

    if k == 1:  return int(n>=1);

    return sum( T(n-i, k-1) for i in [1..k-1] );

# print triangle A179748 including column zero = [1, 0, 0, 0, ...]:

#for n in [0..10]: print [ T(n, k) for k in [0..n] ]

def a(n): return sum( T(n, k) for k in [0..n] );

print [a(n) for n in [0..66]]

# Joerg Arndt, Mar 24 2014

(PARI) N=66; q='q+O('q^N); Vec( 1 + q/(1-q) * sum(n=0, N, q^n * prod(k=1, n, (1-q^k)/(1-q) ) ) ) \\ Joerg Arndt, Mar 24 2014

CROSSREFS

Cf. A238859 (compositions with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).

Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).

Sequence in context: A192633 A125028 A119262 * A062178 A173282 A178833

Adjacent sequences:  A177507 A177508 A177509 * A177511 A177512 A177513

KEYWORD

nonn

AUTHOR

Mats Granvik, Dec 11 2010

EXTENSIONS

New name and a(0) = 1 prepended, Joerg Arndt, Mar 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 27 04:25 EDT 2017. Contains 289841 sequences.