login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062178
a(n+1) = 2a(n)-a([n/2]) starting with a(0)=0 and a(1)=1.
4
0, 1, 2, 3, 5, 8, 14, 25, 47, 89, 173, 338, 668, 1322, 2630, 5235, 10445, 20843, 41639, 83189, 166289, 332405, 664637, 1328936, 2657534, 5314400, 10628132, 21254942, 42508562, 85014494, 170026358, 340047481, 680089727, 1360169009, 2720327573
OFFSET
0,3
COMMENTS
As partial sum of Narayana-Zidek-Capell numbers A002083, this is the number of words beginning with 1, with sum of integers <=n, in the sequence 1, 11, 111, 112, 1111, 1112, 1113, 1121, 1122, 1123, 1124, 11111, 11112, 11113, 11114, 11121, 11122, 11123, 11124, 11125, 11131, 11132, 11133, 11134, 11135, 11136, where any positive integer, in any word, is <= the sum of the preceding integers.
The subsequence of primes in this partial sum begins: 2, 3, 5, 47, 89, 173, 166289. [From Jonathan Vos Post, Feb 17 2010]
For n > 0: a(n) = A005255(n-1) + 1. - Reinhard Zumkeller, Nov 18 2012
LINKS
FORMULA
a(n) =a(n-1)+A002083(n).
EXAMPLE
a(7)=2a(6)-a(3)=2*14-3=25. a(8)=2a(7)-a(3)=2*25-3=47. a(9)=2a(8)-a(4)=2*47-5=89.
PROG
(Haskell)
a062178 n = a062178_list !! (n-1)
a062178_list = scanl (+) 0 a002083_list
-- Reinhard Zumkeller, Nov 18 2012
CROSSREFS
Sequence in context: A349777 A119262 A177510 * A173282 A178833 A212657
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jun 12 2001
STATUS
approved