OFFSET
0,3
COMMENTS
As partial sum of Narayana-Zidek-Capell numbers A002083, this is the number of words beginning with 1, with sum of integers <=n, in the sequence 1, 11, 111, 112, 1111, 1112, 1113, 1121, 1122, 1123, 1124, 11111, 11112, 11113, 11114, 11121, 11122, 11123, 11124, 11125, 11131, 11132, 11133, 11134, 11135, 11136, where any positive integer, in any word, is <= the sum of the preceding integers.
The subsequence of primes in this partial sum begins: 2, 3, 5, 47, 89, 173, 166289. [From Jonathan Vos Post, Feb 17 2010]
For n > 0: a(n) = A005255(n-1) + 1. - Reinhard Zumkeller, Nov 18 2012
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
FORMULA
a(n) =a(n-1)+A002083(n).
EXAMPLE
a(7)=2a(6)-a(3)=2*14-3=25. a(8)=2a(7)-a(3)=2*25-3=47. a(9)=2a(8)-a(4)=2*47-5=89.
PROG
(Haskell)
a062178 n = a062178_list !! (n-1)
a062178_list = scanl (+) 0 a002083_list
-- Reinhard Zumkeller, Nov 18 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jun 12 2001
STATUS
approved