login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062180
Harmonic mean of digits is 2.
2
2, 22, 136, 144, 163, 222, 316, 361, 414, 441, 613, 631, 1236, 1244, 1263, 1326, 1333, 1362, 1424, 1442, 1623, 1632, 2136, 2144, 2163, 2222, 2316, 2361, 2414, 2441, 2613, 2631, 3126, 3133, 3162, 3216, 3261, 3313, 3331, 3612, 3621, 4124, 4142, 4214, 4241
OFFSET
1,1
LINKS
MAPLE
h:= proc(L) local m, x, i, t;
m:= nops(L)+1;
x:= m/2 - add(1/t, t=L);
if x > 0 then
x:= 1/x;
if x::posint and x <= 9 then
return(x + add(L[i]*10^i, i=1..m-1))
fi fi
end proc:
f:= n -> h(map(`+`, convert(n, base, 9), 1)):
g:= n -> h([op(map(`+`, convert(n, base, 9), 1)), 1]):
R:= 2:
for d from 1 to 4 do
R:= R, seq(f(i), i=9^(d-1)..9^d-1), seq(g(i), i=9^(d-1)..9^d-1)
od:
R; # Robert Israel, Apr 05 2021
MATHEMATICA
Do[ h = IntegerDigits[n]; If[ Sort[h][[1]] != 0 && Length[h]/Apply[Plus, 1/h] == 2, Print[n]], {n, 1, 10^4}]
KEYWORD
base,easy,nonn
AUTHOR
Vladeta Jovovic, Jun 12 2001
EXTENSIONS
More terms from Henry Bottomley, Jul 25 2001
STATUS
approved