login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353191
Expansion of e.g.f. 1/(1 - Sum_{k>=1} mu(k) * x^k / k), where mu() is the Moebius function (A008683).
1
1, 1, 1, -2, -22, -134, -418, 1044, 35352, 371256, 2662872, 2256, -348450672, -7383337584, -85166363280, -224652273504, 17983453809024, 500248545941376, 7414246148833152, 13911378371907840, -2620344425592796416, -85017815816225598720, -1321651042532303189760
OFFSET
0,4
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} (k-1)! * mu(k) * binomial(n,k) * a(n-k).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[(k - 1)! * MoebiusMu[k] * Binomial[n, k] * a[n - k], {k, 1, n}]; Array[a, 23, 0] (* Amiram Eldar, Apr 30 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, moebius(k)*x^k/k))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (j-1)!*moebius(j)*binomial(i, j)*v[i-j+1])); v;
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 29 2022
STATUS
approved