login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353192
Expansion of e.g.f. 1/(1 - Sum_{k>=1} phi(k) * x^k / k), where phi is the Euler totient function A000010.
0
1, 1, 3, 16, 110, 986, 10202, 126288, 1770120, 27939192, 489658632, 9455296896, 198951693360, 4537680805776, 111426422418768, 2931467216681856, 82273083792879744, 2453340521239749504, 77458777017799833216, 2581489882182061744128
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A074930(k) * binomial(n,k) * a(n-k).
MATHEMATICA
phi[k_] := phi[k] = EulerPhi[k]; a[0] = 1; a[n_] := a[n] = Sum[(k - 1)! * phi[k] * Binomial[n, k] * a[n - k], {k, 1, n}]; Array[a, 20, 0] (* Amiram Eldar, Apr 30 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, eulerphi(k)*x^k/k))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (j-1)!*eulerphi(j)*binomial(i, j)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 29 2022
STATUS
approved