The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180609 G.f. L(x) satisfies: L(x) = L(exp(x)-1)*(1-exp(-x))/x = Sum_{n>=1} a(n)*x^n/(n!*(n+1)!). 3
1, -1, 3, -16, 110, -540, -9240, 292320, 14908320, -1639612800, -33013854720, 21046667685120, -549927873855360, -637881314775344640, 76198391578224115200, 41404329870413936025600, -12499862617277304901632000, -5212560012919105291193548800, 3436632117109253032257698611200, 1146156616720354265092896141312000, -1615552168543480516126725021634560000, -379914190499326491647463301427478528000, 1268235921756889621556352102589895172096000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
M Manetti, G Ricciardi, Universal Lie formulas for higher antibrackets, arXiv preprint arXiv:1509.09032 [math.QA], 2015-2016.
FORMULA
G.f. satisfies: L(x) = (1+x)*log(1+x) * L( log(1+x) ) /x.
Let E_n(x) = E_{n-1}(exp(x)-1) denote the n-th iteration of exp(x)-1, then
. L(E_n(x)) = L(x) * x * E_n'(x) / E_n(x) for all n.
G.f. L(x) forms column 0 in the matrix log of the Riordan array ((exp(x)-1)/x, exp(x)-1).
Manetti-Ricciardi Theorem 4.4 give a recurrence for K_n := a(n)/n! in terms of Stirling numbers. - N. J. A. Sloane, May 25 2016
EXAMPLE
G.f.: L(x) = x/(1!*2!) - x^2/(2!*3!) + 3*x^3/(3!*4!) - 16*x^4/(4!*5!) + 110*x^5/(5!*6!) - 540*x^6/(6!*7!) - 9240*x^7/(7!*8!) + 292320*x^8/(8!*9!) -+...
The Riordan array ((exp(x)-1)/x, exp(x)-1) begins:
1;
1/(1!2!), 1;
2/(2!3!), 2/(1!2!), 1;
6/(3!4!), 7/(2!3!), 3/(1!2!), 1;
24/(4!5!), 36/(3!4!), 15/(2!3!), 4/(1!2!), 1;
120/(5!6!), 248/(4!5!), 108/(3!4!), 26/(2!3!), 5/(1!2!), 1;
720/(6!7!), 2160/(5!6!), 1032/(4!5!), 240/(3!4!), 40/(2!3!), 6/(1!2!), 1; ...
where the g.f. of column k = ((exp(x)-1)/x)^(k+1) for k>=0.
...
The matrix log of the above array begins:
0;
1/(1!2!), 0;
-1/(2!3!), 2/(1!2!), 0;
3/(3!4!), -2/(2!3!), 3/(1!2!), 0;
-16/(4!5!), 6/(3!4!), -3/(2!3!), 4/(1!2!), 0;
110/(5!6!), -32/(4!5!), 9/(3!4!), -4/(2!3!), 5/(1!2!), 0;
-540/(6!7!), 220/(5!6!), -48/(4!5!), 12/(3!4!), -5/(2!3!), 6/(1!2!), 0;
-9240/(7!8!), -1080/(6!7!), 330/(5!6!), -64/(4!5!), 15/(3!4!), -6/(2!3!), 7/(1!2!), 0; ...
in which the g.f. of column k equals (k+1)*L(x) for k>=0 and L(x) is the g.f. of this sequence.
MATHEMATICA
K[1] = 1;
K[n_] := K[n] = -2/((n+2)(n-1)) Sum[StirlingS2[n+1, i] K[i], {i, 1, n-1}];
a[n_] := n! K[n];
Array[a, 23] (* Jean-François Alcover, Jul 26 2018, from the Manetti-Ricciardi recurrence *)
PROG
(PARI) {a(n)=local(M=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(((exp(x+x^2*O(x^n))-1)/x)^c, r-c))), L=sum(n=1, #M, -(M^0-M)^n/n)); n!*(n+1)!*L[n+1, 1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A180610.
The fractions a(n)/n! are A134242(n)/A134243(n).
Sequence in context: A220379 A191800 A286764 * A074540 A353192 A218680
KEYWORD
sign,easy
AUTHOR
Paul D. Hanna, Sep 12 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 11:52 EDT 2024. Contains 372858 sequences. (Running on oeis4.)