OFFSET
1,2
FORMULA
G.f. L(x) satisfies: L(x) = (1 + W(x))*L(W(x)) where W(x) = Sum_{n>=1} (-1)^(n-1)*n^n*x^n/n! is the LambertW function.
Let E_n(x) = E_{n-1}(x*exp(x)) denote the n-th iteration of x*exp(x), then
. L(E_2(x)) = L(x)*(1+x)*(1+x*exp(x));
. L(E_3(x)) = L(x)*(1+x)*(1+x*exp(x))*(1+x*exp(x*exp(x)));
. L(E_n(x)) = L(x)*x*E_n'(x)/E_n(x) = L(x)*Product_{k=0..n-1}(1+E_k(x)).
G.f. L(x) forms column 0 in the matrix log of the Riordan array (exp(x), x*exp(x)).
EXAMPLE
G.f: L(x) = x - 2*x^2/2!^2 + 15*x^3/3!^2 - 240*x^4/4!^2 + 6420*x^5/5!^2 - 249120*x^6/6!^2 + 12729360*x^7/7!^2 -+...
The Riordan array (exp(x), x*exp(x)) begins:
1;
1, 1;
1/2!, 2, 1;
1/3!, 4/2!, 3, 1;
1/4!, 8/3!, 9/2!, 4, 1;
1/5!, 16/4!, 27/3!, 16/2!, 5, 1;
1/6!, 32/5!, 81/4!, 64/3!, 25/2!, 6, 1; ...
The matrix log of the above array begins:
0;
1, 0;
-2/2!^2, 2, 0;
15/3!^2, -4/2!^2, 3, 0;
-240/4!^2, 30/3!^2, -6/2!^2, 4, 0;
6420/5!^2, -480/4!^2, 45/3!^2, -8/2!^2, 5, 0;
-249120/6!^2, 12840/5!^2, -720/4!^2, 60/3!^2, -10/2!^2, 6, 0; ...
in which the g.f. of column k equals (k+1)*L(x) for k>=0 where L(x) is the g.f. of this sequence.
PROG
(PARI) {a(n)=local(M=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(exp(c*x+x*O(x^n)), r-c))), L=sum(n=1, #M, -(M^0-M)^n/n)); n!^2*L[n+1, 1]}
CROSSREFS
KEYWORD
eigen,sign
AUTHOR
Paul D. Hanna, Sep 11 2010
EXTENSIONS
Formula corrected by Paul D. Hanna, Sep 19 2010
STATUS
approved