login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180610
G.f. satisfies: L(x) = L(x*exp(x))/(1+x) = Sum_{n>=1} a(n)*x^n/n!^2.
2
1, -2, 15, -240, 6420, -249120, 12729360, -799249920, 59539354560, -5472506188800, 708462047462400, -129547455170918400, 24363744478955481600, -2357904494544779980800, -506327043021030975744000
OFFSET
1,2
FORMULA
G.f. L(x) satisfies: L(x) = (1 + W(x))*L(W(x)) where W(x) = Sum_{n>=1} (-1)^(n-1)*n^n*x^n/n! is the LambertW function.
Let E_n(x) = E_{n-1}(x*exp(x)) denote the n-th iteration of x*exp(x), then
. L(E_2(x)) = L(x)*(1+x)*(1+x*exp(x));
. L(E_3(x)) = L(x)*(1+x)*(1+x*exp(x))*(1+x*exp(x*exp(x)));
. L(E_n(x)) = L(x)*x*E_n'(x)/E_n(x) = L(x)*Product_{k=0..n-1}(1+E_k(x)).
G.f. L(x) forms column 0 in the matrix log of the Riordan array (exp(x), x*exp(x)).
EXAMPLE
G.f: L(x) = x - 2*x^2/2!^2 + 15*x^3/3!^2 - 240*x^4/4!^2 + 6420*x^5/5!^2 - 249120*x^6/6!^2 + 12729360*x^7/7!^2 -+...
The Riordan array (exp(x), x*exp(x)) begins:
1;
1, 1;
1/2!, 2, 1;
1/3!, 4/2!, 3, 1;
1/4!, 8/3!, 9/2!, 4, 1;
1/5!, 16/4!, 27/3!, 16/2!, 5, 1;
1/6!, 32/5!, 81/4!, 64/3!, 25/2!, 6, 1; ...
The matrix log of the above array begins:
0;
1, 0;
-2/2!^2, 2, 0;
15/3!^2, -4/2!^2, 3, 0;
-240/4!^2, 30/3!^2, -6/2!^2, 4, 0;
6420/5!^2, -480/4!^2, 45/3!^2, -8/2!^2, 5, 0;
-249120/6!^2, 12840/5!^2, -720/4!^2, 60/3!^2, -10/2!^2, 6, 0; ...
in which the g.f. of column k equals (k+1)*L(x) for k>=0 where L(x) is the g.f. of this sequence.
PROG
(PARI) {a(n)=local(M=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(exp(c*x+x*O(x^n)), r-c))), L=sum(n=1, #M, -(M^0-M)^n/n)); n!^2*L[n+1, 1]}
CROSSREFS
Sequence in context: A192561 A356587 A227098 * A156750 A292798 A379886
KEYWORD
eigen,sign
AUTHOR
Paul D. Hanna, Sep 11 2010
EXTENSIONS
Formula corrected by Paul D. Hanna, Sep 19 2010
STATUS
approved