login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318917
Expansion of e.g.f. exp(Sum_{k>=1} phi(k)*x^k/k), where phi is the Euler totient function A000010.
8
1, 1, 2, 8, 38, 262, 1732, 16144, 153596, 1660796, 19415384, 264084064, 3664187848, 57366995272, 936097392752, 16131362629568, 302946516251408, 6034409270818576, 125044362929875744, 2756094464546395264, 63280996793936902496
OFFSET
0,3
LINKS
FORMULA
a(n)/n! ~ 3^(1/4) * exp(2*sqrt(6*n)/Pi) / (Pi * 2^(3/4) * n^(3/4)).
E.g.f.: Product_{k>=1} 1 / (1 - x^k)^f(k), where f(k) = (1/k) * Sum_{j=1..k} mu(gcd(k,j)). - Ilya Gutkovskiy, Aug 17 2021
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} phi(k) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 29 2022
E.g.f.: exp( Sum_{n>=1} (mu(n)/n) * x^n/(1 - x^n) ), where mu(n) = A008683(n). - Paul D. Hanna, Jun 24 2023
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[Sum[EulerPhi[k]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[EulerPhi[k]* a[n-k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 20}]
PROG
(PARI) a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, eulerphi(k)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Apr 29 2022
CROSSREFS
Cf. A000010 (phi), A008683 (mu).
Sequence in context: A355396 A265906 A060389 * A203122 A207157 A198049
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 05 2018
STATUS
approved