login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318919
Define b(0)=0, b(1)[1]=1, b(1)[2]=1; and for n>=2, b(n)[1] = total number of digits in b(n-1), and b(n)[2] = total number of digits in b(0),...,b(n-1); a(n) = b(n)[2].
2
1, 3, 5, 7, 9, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213
OFFSET
1,2
REFERENCES
Eric Angelini, Posting to Math Fun Mailing List, Aug 20 2007.
EXAMPLE
The initial values of b(0), b(1), ... are:
b(0) = 0
b(1) = [1, 1]
b(2) = [2, 3]
b(3) = [2, 5]
b(4) = [2, 7]
b(5) = [2, 9]
b(6) = [2, 11]
b(7) = [3, 14]
b(8) = [3, 17]
b(9) = [3, 20]
b(10) = [3, 23]
b(11) = [3, 26]
b(12) = [3, 29]
...
The second terms give the present sequence.
The sequence of values of the first terms b(i)[1] for i >= 1 consists of 1 (once), 2 (5 times), 3 (30 times), 4 (225 times), 5 (1800 times), 6 (15000 times), ... (see A318920).
MAPLE
A055642 := proc(n) max(1, ilog10(n)+1) ; end proc:
read transforms;
M:=1000;
b[1]:=[1, 1];
for n from 2 to M do
b[n][1]:=A055642(b[n-1][1]) + A055642(b[n-1][2]);
b[n][2]:=b[n-1][2]+b[n][1];
od:
s2:=[seq(b[n][2], n=1..M)]; # A318919
s1:=[seq(b[n][1], n=1..M)]: RUNS(s1); # A318920
CROSSREFS
For b(n)[1] see A318920.
Sequence in context: A066665 A278451 A175269 * A279539 A174059 A321676
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Sep 06 2018
STATUS
approved