login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177511
A053735-perfect numbers.
2
3, 26, 62, 74, 77, 133, 134, 143, 155, 161, 185, 203, 206, 209, 215, 218, 319, 323, 341, 386, 398, 458, 473, 542, 545, 551, 554, 562, 565, 581, 589, 611, 614, 629, 635, 662, 671, 695, 698, 703, 706, 707, 713, 718, 721, 889, 899, 913, 959, 965, 998
OFFSET
1,1
COMMENTS
For definition, see A175522.
LINKS
FORMULA
{n : sum_{d|n, d<n} A053735(d) = A053735(n)}.
MAPLE
A053735 := proc(n) add(d, d=convert(n, base, 3)) ; end proc:
isA177511 := proc(n) local a, d ; a := 0 ; for d in numtheory[divisors](n) minus {n} do a := a+A053735(d) ; end do: a = A053735(n) ; end proc:
for n from 1 to 1000 do if isA177511(n) then printf("%d, ", n) ; end if; end do: # R. J. Mathar
PROG
(Sage) A053735 = lambda n: sum(n.digits(base=3))
is_A177511 = lambda n: sum(A053735(d) for d in divisors(n)) == 2*A053735(n)
# D. S. McNeil, Dec 11 2010
(PARI) isok(n) = sumdiv(n, d, (d<n)* vecsum(digits(d, 3))) == vecsum(digits(n, 3)); \\ Michel Marcus, Feb 06 2016
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Dec 11 2010
EXTENSIONS
Extended by D. S. McNeil, Dec 11 2010
STATUS
approved