login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047507
Numbers that are congruent to {0, 4, 6, 7} mod 8.
2
0, 4, 6, 7, 8, 12, 14, 15, 16, 20, 22, 23, 24, 28, 30, 31, 32, 36, 38, 39, 40, 44, 46, 47, 48, 52, 54, 55, 56, 60, 62, 63, 64, 68, 70, 71, 72, 76, 78, 79, 80, 84, 86, 87, 88, 92, 94, 95, 96, 100, 102, 103, 104, 108, 110, 111, 112, 116, 118, 119, 120, 124
OFFSET
1,2
FORMULA
G.f.: x^2*(4+2*x+x^2+x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, May 27 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-3+i^(2*n)-(1+2*i)*i^(-n)-(1-2*i)*i^n)/4 where i=sqrt(-1).
a(2k) = A047535(k), a(2k-1) = A047451(k). (End)
E.g.f.: (2 - 2*sin(x) - cos(x) + (4*x - 2)*sinh(x) + (4*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 27 2016
Sum_{n>=2} (-1)^n/a(n) = (6-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8 - sqrt(2)*Pi/16. - Amiram Eldar, Dec 23 2021
a(n) = -A003485(-n) = a(n+4) - 8 for all n in Z. - Michael Somos, Dec 12 2023
EXAMPLE
G.f. = 4*x^2 + 6*x^3 + 7*x^4 + 8*x^5 + 12*x^6 + 14*x^7 + 15*x^8 + 16*x^9 + ... - Michael Somos, Dec 12 2023
MAPLE
A047507:=n->(8*n-3+I^(2*n)-(1+2*I)*I^(-n)-(1-2*I)*I^n)/4: seq(A047507(n), n=1..100); # Wesley Ivan Hurt, May 27 2016
MATHEMATICA
Table[(8n-3+I^(2n)-(1+2*I)*I^(-n)-(1-2*I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 27 2016 *)
a[ n_] := 2*n - Max[0, 2 - Mod[1-n, 4]]; (* Michael Somos, Dec 12 2023 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 4, 6, 7]]; // Wesley Ivan Hurt, May 27 2016
(PARI) {a(n) = 2*n - max(0, 2 - (1-n)%4)}; /* Michael Somos, Dec 12 2023 */
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved