login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047510
Numbers that are congruent to {2, 4, 6, 7} mod 8.
1
2, 4, 6, 7, 10, 12, 14, 15, 18, 20, 22, 23, 26, 28, 30, 31, 34, 36, 38, 39, 42, 44, 46, 47, 50, 52, 54, 55, 58, 60, 62, 63, 66, 68, 70, 71, 74, 76, 78, 79, 82, 84, 86, 87, 90, 92, 94, 95, 98, 100, 102, 103, 106, 108, 110, 111, 114, 116, 118, 119, 122, 124
OFFSET
1,1
FORMULA
From Wesley Ivan Hurt, May 27 2016: (Start)
G.f.: x*(2+2*x+2*x^2+x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-1-i^(2*n)-i^(-n)-i^n)/4 where i=sqrt(-1).
a(2k) = A047535(k), a(2k-1) = A016825(k-1) for k>0. (End)
E.g.f.: (2 - cos(x) + 4*x*sinh(x) + (4*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 27 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 - sqrt(2)*log(2*sqrt(2)+3)/16. - Amiram Eldar, Dec 25 2021
MAPLE
A047510:=n->(8*n-1-I^(2*n)-I^(-n)-I^n)/4: seq(A047510(n), n=1..100); # Wesley Ivan Hurt, May 27 2016
MATHEMATICA
Table[(8n-1-I^(2n)-I^(-n)-I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 27 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [2, 4, 6, 7]]; // Wesley Ivan Hurt, May 27 2016
CROSSREFS
Sequence in context: A286047 A325426 A227090 * A189030 A198033 A375598
KEYWORD
nonn,easy
STATUS
approved