login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Radon function, also called Hurwitz-Radon numbers.
(Formerly M0161)
13

%I M0161 #103 Oct 22 2022 08:05:41

%S 1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,9,1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,10,1,2,

%T 1,4,1,2,1,8,1,2,1,4,1,2,1,9,1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,12,1,2,1,4,

%U 1,2,1,8,1,2,1,4,1,2,1,9,1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,10,1,2,1,4,1,2

%N Radon function, also called Hurwitz-Radon numbers.

%C This sequence and A006519 (greatest power of 2 dividing n) are very similar, the difference being all zeros except for every 16th term (see A101119 for nonzero differences). - _Simon Plouffe_, Dec 02 2004

%C For all n congruent to 2^k (mod 2^(k+1)), a(n) is the same. Therefore, for any natural number m, the list of the first 2^m - 1 terms is palindromic. - _Ivan N. Ianakiev_, Jul 21 2019

%C Named after the Austrian mathematician Johann Radon (1887-1956) and the German mathematician Adolf Hurwitz (1859-1919). - _Amiram Eldar_, Jun 15 2021

%D T. Y. Lam, The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, p. 131.

%D Takashi Ono, Variations on a Theme of Euler, Plenum, NY, 1994, p. 192.

%D A. R. Rajwade, Squares, Camb. Univ. Press, London Math. Soc. Lecture Notes Series 171, 1993; see p. 127.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A003484/b003484.txt">Table of n, a(n) for n = 1..10000</a>

%H J. Frank Adams, <a href="http://dx.doi.org/10.1016/0040-9383(62)90096-4">Vector fields on spheres</a>, Topology, Vol. 1 (1962), pp. 63-65.

%H J. Frank Adams, <a href="https://doi.org/10.1090/S0002-9904-1962-10693-4">Vector fields on spheres</a>, Bull. Amer. Math. Soc., Vol. 68 (1962), pp. 39-41.

%H J. Frank Adams, <a href="http://www.jstor.org/stable/1970213">Vector fields on spheres</a>, Annals of Math., Vol. 75 (1962), pp. 603-632.

%H J.-P. Allouche and J. Shallit, <a href="http://www.math.jussieu.fr/~allouche/kreg2.ps">The Ring of k-regular Sequences, II</a>.

%H J.-P. Allouche and J. Shallit, <a href="http://dx.doi.org/10.1016/S0304-3975(03)00090-2">The ring of k-regular sequences, II</a>, Theoret. Computer Sci., Vol. 307 (2003), pp. 3-29.

%H Adolf Hurwitz, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002269074">Uber die Komposition der quadratischen formen</a>, Math. Annalen, Vol. 88 (1923), pp. 1-25.

%H Michel A. Kervaire, <a href="http://www.pnas.org/content/44/3/280.full.pdf">Non-parallelizability of the sphere for n > 7</a>, Proc. Nat. Acad. Sci. USA, Vol. 44, No. 3 (1958), pp. 280-283.

%H John Milnor, <a href="http://www.jstor.org/stable/1970255">Some consequences of a theorem of Bott</a>, Annals of Mathematics, Second Series, Vol. 68, No. 2 (1958), pp. 444-449.

%H Johann Radon, <a href="https://doi.org/10.1007/BF02940576">Lineare scharen orthogonaler matrizen</a>,Abh. Math. Sem. Univ. Hamburg, Vol. 1 (1922), pp. 1-14.

%H Daniel B. Shapiro, <a href="/A003484/a003484.pdf">Letter to N. J. A. Sloane, 1974</a>.

%H <a href="/index/Cor#core">Index entries for "core" sequences</a>.

%F a(n) = A003485(A007814(n)).

%F If n=2^(4*b+c)*d, 0<=c<=3, d odd, then a(n) = 8*b + 2^c.

%F If n=2^m*d, d odd, then a(n) = 2*m+1 if m=0 mod 4, a(n) = 2*m if m=1 or 2 mod 4, a(n) = 2*m+2 (otherwise, i.e., if m=3 mod 4).

%F Multiplicative with a(p^e) = 2e + a_(e mod 4) if p = 2; 1 if p > 2; where a = (1, 0, 0, 2). - _David W. Wilson_, Aug 01 2001

%F Dirichlet g.f. zeta(s) *(1-1/2^s)* {7*2^(-4*s) +1 +2^(3-3*s) +3*2^(1-5*s) +2^(1-s) +2^(2-6*s) +2^(2-2*s) }/ (1-2^(-4*s))^2. - _R. J. Mathar_, Mar 04 2011

%F a(A005408(n))=1; a(2*n) = A209675(n); a(A016825(n))=2; a(A017113(n))=4; a(A051062(n))=8. - _Reinhard Zumkeller_, Mar 11 2012

%F a((2*n-1)*2^p) = A003485(p), p >=0. - _Johannes W. Meijer_, Jun 07 2011, Dec 15 2012

%F Lambert series g.f. Sum_(k >=0) q^(2^(4*k))/(1-q^(2^(4*k))) +q^(2^(4*k+1))/(1-q^(2^(4*k+1))) +2*q^(2^(4*k+2))/(1-q^(2^(4*k+2))) +4*q^(2^(4*k+3))/(1-q^(2^(4*k+3))). - _Mamuka Jibladze_, Dec 07 2016

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 8/3. - _Amiram Eldar_, Oct 22 2022

%e G.f. = x + 2*x^2 + x^3 + 4*x^4 + x^5 + 2*x^6 + x^7 + 8*x^8 + x^9 + ...

%p readlib(ifactors): for n from 1 to 150 do if n mod 2 = 1 then printf(`%d,`,1) fi: if n mod 2 = 0 then m := ifactors(n)[2][1][2]: if m mod 4 = 0 then printf(`%d,`,2*m+1) fi: if m mod 4 = 1 then printf(`%d,`,2*m) fi: if m mod 4 = 2 then printf(`%d,`,2*m) fi: if m mod 4 = 3 then printf(`%d,`,2*m+2) fi: fi: od: # _James A. Sellers_, Dec 07 2000

%p nmax:=102; A003485 := proc(n): A003485(n) := ceil((n+1)/4) + ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) end: A029837 := n -> ceil(simplify(log[2](n))): for p from 0 to A029837(nmax) do for n from 1 to ceil(nmax/(p+2)) do A003484((2*n-1)*2^p):= A003485(p): od: od: seq(A003484(n), n=1..nmax); # _Johannes W. Meijer_, Jun 07 2011, Dec 15 2012

%t a[n_] := 8*Quotient[IntegerExponent[n, 2], 4] + 2^Mod[IntegerExponent[n, 2], 4]; Table[a[n], {n, 1, 102}] (* _Jean-François Alcover_, Sep 08 2011, after _Paul D. Hanna_ *)

%o (PARI) a(n)=8*(valuation(n,2)\4)+2^(valuation(n,2)%4) /* _Paul D. Hanna_, Dec 02 2004 */

%o (Haskell)

%o a003484 n = 2 * e + cycle [1,0,0,2] !! e where e = a007814 n

%o -- _Reinhard Zumkeller_, Mar 11 2012

%o (Python)

%o def A003484(n): return (((m:=(~n&n-1).bit_length())&-4)<<1)+(1<<(m&3)) # _Chai Wah Wu_, Jul 09 2022

%Y See A053381 for a closely related sequence.

%Y Cf. A003485, A006519, A007814, A101119.

%K nonn,easy,core,nice,mult

%O 1,2

%A _N. J. A. Sloane_

%E More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000