login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 16*n + 8.
17

%I #92 Nov 27 2024 07:27:14

%S 8,24,40,56,72,88,104,120,136,152,168,184,200,216,232,248,264,280,296,

%T 312,328,344,360,376,392,408,424,440,456,472,488,504,520,536,552,568,

%U 584,600,616,632,648,664,680,696,712,728,744,760,776,792,808,824,840

%N a(n) = 16*n + 8.

%C Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(97).

%C n such that 32 is the largest power of 2 dividing A003629(k)^n-1 for any k. - _Benoit Cloitre_, Mar 23 2002

%C Continued fraction expansion of tanh(1/8). - _Benoit Cloitre_, Dec 17 2002

%C If Y and Z are 2-blocks of a (4n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - _Milan Janjic_, Oct 28 2007

%C General form: (q*n+x)*q x=+1; q=2=A016825, q=3=A017197, q=4=A119413, ... x=-1; q=3=A017233, q=4=A098502, ... x=+2; q=4=A051062, ... - _Vladimir Joseph Stephan Orlovsky_, Feb 16 2009

%C a(n)*n+1 = (4n+1)^2 and a(n)*(n+1)+1 = (4n+3)^2 are both perfect squares. - _Carmine Suriano_, Jun 01 2014

%C For all positive integers n, there are infinitely many positive integers k such that k*n + 1 and k*(n+1) + 1 are both perfect squares. Except for 8, all the numbers of this sequence are the smallest integers k which are solutions for getting two perfect squares. Example: a(1) = 24 and 24 * 1 + 1 = 25 = 5^2, then 24 * (1+1) + 1 = 49 = 7^2. [Reference AMM] - _Bernard Schott_, Sep 24 2017

%C Numbers k such that 3^k + 1 is divisible by 17*193. - _Bruno Berselli_, Aug 22 2018

%D Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov 11 1999

%H Mihaly Bencze, <a href="http://www.mat.uniroma2.it/~tauraso/AMM/AMM11508.pdf">Problem 11508</a>, The American Mathematical Monthly, Vol. 117, N° 5, May 2010, p. 459.

%H Milan Janjić, <a href="https://web.archive.org/web/20181001110015/https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>. [Wayback Machine link]

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg0new.gp">Dimensions of the spaces S_k^{new}(Gamma_0(N))</a>.

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F a(n) = A118413(n+1,4) for n>3. - _Reinhard Zumkeller_, Apr 27 2006

%F a(n) = 32*n - a(n-1) for n>0, a(0)=8. - _Vincenzo Librandi_, Aug 06 2010

%F A003484(a(n)) = 8; A209675(a(n)) = 9. - _Reinhard Zumkeller_, Mar 11 2012

%F A007814(a(n)) = 3; A037227(a(n)) = 7. - _Reinhard Zumkeller_, Jun 30 2012

%F a(-1 - n) = - a(n). - _Michael Somos_, Jun 02 2014

%F Sum_{n>=0} (-1)^n/a(n) = Pi/32 (A244978). - _Amiram Eldar_, Feb 28 2023

%F From _Elmo R. Oliveira_, Apr 16 2024: (Start)

%F G.f.: 8*(1+x)/(1-x)^2.

%F E.g.f.: 8*exp(x)*(1 + 2*x).

%F a(n) = 8*A005408(n) = A008598(n) + 8 = A139098(n+1) - A139098(n).

%F a(n) = 4*A016825(n) = 2*A017113(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

%F From _Amiram Eldar_, Nov 25 2024: (Start)

%F Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)*sin(7*Pi/32).

%F Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2)*cos(7*Pi/32). (End)

%p A051062:=n->16*n+8; seq(A051062(n), n=0..50); # _Wesley Ivan Hurt_, Jun 01 2014

%t Range[8, 1000, 16] (* _Vladimir Joseph Stephan Orlovsky_, May 31 2011 *)

%t Table[16n+8, {n,0,50}] (* _Wesley Ivan Hurt_, Jun 01 2014 *)

%t LinearRecurrence[{2,-1},{8,24},60] (* or *) NestList[#+16&,8,60] (* _Harvey P. Dale_, Aug 18 2019 *)

%o (Magma) [16*n+8: n in [0..50]]; // _Wesley Ivan Hurt_, Jun 01 2014

%o (PARI) a(n)=16*n+8 \\ _Charles R Greathouse IV_, May 09 2016

%Y Cf. A005408, A008598, A017113, A106839, A139098, A244978.

%Y Cf. A003484, A007814, A037227, A118413, A209675.

%Y Cf. A003629, A016825, A017197, A017233, A098502, A119413.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_, _Gary W. Adamson_, Dec 11 1999