login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A231366
Number of numbers whose sum of non-divisors (A024816) is equal to n.
6
2, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
a(n) = frequency of values n in A024816(m), where A024816(m) = sum of non-divisors of m = antisigma(m).
From Charles R Greathouse IV, Nov 11 2013: (Start)
So far all n such that a(n) > 1 correspond to members of A067816:
a(0) = 2 from 1, 2;
a(9) = 2 from 5, 6;
a(36844389) = 2 from 8585, 8586;
a(129894940) = 2 from 16119, 16120;
a(446591224981504) = 2 from 29886159, 29886160.
I checked this, and thus Krizek's conjecture below, up to 4*10^19.
(End)
LINKS
FORMULA
Conjecture: max a(n) = 2.
a(A231368(n)) >= 1, a(A231369(n)) = 0.
a(n) = 0 for such n that A231367(n) = 0, a(n) = 0 if A024816(m) = n has no solution.
a(n) >= 1 for such n that A231367(n) = 1, a(n) >= 1 if A024816(m) = n for any m.
Conjecture: a(n) = 2 iff n is number from A225775 (0, 9, 36844389, 129894940, 446591224981504, …)
EXAMPLE
a(9) = 2 because there are two numbers m (5, 6) with antisigma(m) = 9.
PROG
(PARI)
up_to = 105;
A024816(n) = (n*(n+1)/2-sigma(n));
A231366list(up_to) = { my(v=vector(1+up_to), u); for(n=1, 2+up_to, if((u = A024816(n))<=up_to, v[1+u]++)); (v); };
v231366 = A231366list(up_to);
A231366(n) = v231366[1+n]; \\ Antti Karttunen, Jan 19 2025
CROSSREFS
Cf. A054973 (number of numbers whose divisors sum to n), A231365, A231368, A231367, A231369, A067816.
Sequence in context: A344584 A037273 A285313 * A158924 A025426 A269244
KEYWORD
nonn,changed
AUTHOR
Jaroslav Krizek, Nov 09 2013
EXTENSIONS
Data section extended to a(105) by Antti Karttunen, Jan 19 2025
STATUS
approved