OFFSET
1,36
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Project Euler, Problem 598: Split Divisibilities
FORMULA
a(p) = 0; for prime p and for an odd power of a prime.
a(p^2k) = 1, for an even power of a prime.
MATHEMATICA
a[n_]:=Sum[Boole[d<=(n/d) && DivisorSigma[0, d] == DivisorSigma[0, n/d]], {d, Divisors[n]}]; Table[a[n], {n, 100}] (* Indranil Ghosh, Apr 18 2017 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d <= n/d) && (numdiv(d) == numdiv(n/d)));
(Python)
from sympy import divisors, divisor_count
def a(n): return sum([d<=(n/d) and divisor_count(d)==divisor_count(n/d) for d in divisors(n)]) # Indranil Ghosh, Apr 18 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Apr 17 2017
STATUS
approved