login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285313
Number of pairs (a,b) such that a*b = n and d(a) = d(b) with d = A000005 and a <= b.
1
1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1
OFFSET
1,36
FORMULA
a(p) = 0; for prime p and for an odd power of a prime.
a(p^2k) = 1, for an even power of a prime.
MATHEMATICA
a[n_]:=Sum[Boole[d<=(n/d) && DivisorSigma[0, d] == DivisorSigma[0, n/d]], {d, Divisors[n]}]; Table[a[n], {n, 100}] (* Indranil Ghosh, Apr 18 2017 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d <= n/d) && (numdiv(d) == numdiv(n/d)));
(Python)
from sympy import divisors, divisor_count
def a(n): return sum([d<=(n/d) and divisor_count(d)==divisor_count(n/d) for d in divisors(n)]) # Indranil Ghosh, Apr 18 2017
CROSSREFS
Cf. A000005, A277621 (for n!).
Sequence in context: A154469 A344584 A037273 * A231366 A158924 A025426
KEYWORD
nonn
AUTHOR
Michel Marcus, Apr 17 2017
STATUS
approved