

A158924


Number of prime powers  1 in interval (A158923(n1), A158923(n)] expressing the excess or deficit relative to the asymptotic average of 1.


3



0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,37


COMMENTS

The first interval is assumed to be (1, A158923(1)].


LINKS

Daniel Forgues, Table of n, a(n) for n=1..9696


CROSSREFS

Cf. A158923: a(1) = 2, a(n) = a(n1) + round(log(a(n1))), n >= 2, for which each (a(n1), a(n)] interval asymptotically contains one prime power on average.
Cf. A158925: Accumulated excess or deficit of prime powers in (1, A158924(n)] (Partial sums of A158924).
Cf. A000961 Prime powers p^k (p prime, k >= 0).
Cf. A025528 Number of prime powers <= n with exponents >0.
Sequence in context: A037273 A285313 A231366 * A025426 A269244 A204246
Adjacent sequences: A158921 A158922 A158923 * A158925 A158926 A158927


KEYWORD

sign


AUTHOR

Daniel Forgues, Mar 31 2009


EXTENSIONS

Corrected and edited by Daniel Forgues, Apr 21 2009


STATUS

approved



