The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158927 a(n) = -3a(n-1) - 3a(n-2) - 2a(n-3), n > 3. 1
 2, 2, 2, -7, 11, -16, 29, -61, 128, -259, 515, -1024, 2045, -4093, 8192, -16387, 32771, -65536, 131069, -262141, 524288, -1048579, 2097155, -4194304, 8388605, -16777213, 33554432, -67108867, 134217731, -268435456, 536870909, -1073741821, 2147483648 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The inverse binomial transform of A153130, after dropping A153130(0). The inverse binomial transform of the full A153130 is A158916. Dropping two initial terms of A153130 yields A158935, dropping three yields essentially a sign-reversed version of A158916, dropping 4 essentially the sequence here. LINKS Muniru A Asiru, Table of n, a(n) for n = 0..600 Index entries for linear recurrences with constant coefficients, signature (-3, -3, -2). FORMULA a(n) = -3a(n-1) - 3a(n-2) - 2a(n-3), with a(0)=a(1)=a(2)=2, a(3)=-7. a(n) = (-1)^(n+1)*A157823(n) - A099838(n+3). G.f.: (2+8*x+14*x^2+9*x^3)/((2*x+1)*(1+x+x^2)). - R. J. Mathar, Apr 09 2009 a(0)=2; a(n) = (1/2)*(-2)^n - 3*cos(2*Pi*n/3) + sqrt(3)*sin(2*Pi*n/3) for n >= 1. - Richard Choulet, Apr 23 2009 MAPLE a := proc(n) option remember: if n=0 then 2 elif n=1 then 2 elif n=2 then 2 elif n=3 then -7 elif n>=4 then -3*procname(n-1) - 3*procname(n-2) - 2*procname(n-3) fi; end: seq(a(n), n=0..100); # Muniru A Asiru, Jan 27 2018 PROG (GAP) a := [2, 2, 2, -7];; for n in [5..10^3] do a[n] := -3*a[n-1] - 3*a[n-2] - 2*a[n-3]; od; a; # Muniru A Asiru, Jan 27 2018 CROSSREFS Same recurrence as A131562, A158916, A158926. Sequence in context: A340976 A023573 A138757 * A121258 A087421 A309574 Adjacent sequences:  A158924 A158925 A158926 * A158928 A158929 A158930 KEYWORD sign AUTHOR Paul Curtz, Mar 31 2009 EXTENSIONS Edited and extended by R. J. Mathar, Apr 09 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 20:42 EDT 2021. Contains 347617 sequences. (Running on oeis4.)