|
|
A158930
|
|
a(n) is the smallest integer not yet in the sequence with no common base-5 digit with a(n-1).
|
|
3
|
|
|
1, 2, 3, 4, 5, 12, 6, 10, 8, 14, 15, 7, 18, 9, 13, 20, 11, 19, 25, 17, 21, 50, 16, 22, 26, 23, 27, 24, 28, 62, 29, 63, 30, 64, 31, 52, 33, 54, 41, 60, 34, 53, 46, 65, 49, 67, 45, 68, 100, 32, 75, 36, 78, 37, 79, 56, 90, 39, 93, 35, 94, 51, 98, 55, 99, 57, 95, 61, 103, 156, 69
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numbers of A031946 or of the 4th row of A051845 do not appear in this sequence. In base-5 notation the sequence reads 1,2,3,4,10,22,11,20,13,24,30,12,33,14,...
|
|
LINKS
|
|
|
EXAMPLE
|
The terms a(1) to a(4) are the first integers in order because they have only a single, non-common digit. a(5)=5(base10)=10(base5) does not share a digit with a(4)=4(base10)=4(base5). The numbers 6(base10)=11(base5) to 9(base10)=14(base5) are ruled out for a(6) because they share a 1 with 10(base5). The numbers 10(base10)=20(base5) and 11(base10)=21(base5) are also ruled out for a(6) because they either have a 0 or a 1 in common with a(5)=10(base5). So a(6)=12(base10)=22(base5) with no 0 or 1 is selected.
|
|
MAPLE
|
for S in combinat:-powerset({$0..4}) minus {{}, {$0..4}} do
if member(0, S) then Last[S]:= 0 else Last[S]:= 1 fi od:
Next:= proc(S)
global Last; local L, nL;
if nops(S) = 1 then Last[S]:= Last[S]*5+S[1]; return Last[S] fi;
Last[S]:= 1+Last[S];
L:= convert(Last[S], base, nops(S));
nL:= nops(L);
if (not member(0, S)) then
if L[-1] > 1 then
Last[S]:= (nops(S))^nL;
L:= [0$nL, 1];
else nL:= nL-1
fi
fi;
L:= subs({seq(i-1=S[i], i=1..nops(S))}, L);
add(L[i]*5^(i-1), i=1..nL)
end proc:
Done:= {1}:
A[1]:= 1:
for n from 2 to 100 do
S:= {$0..4} minus convert(convert(A[n-1], base, 5), set);
do
x:= Next(S);
if not member(x, Done) then break fi
od;
A[n]:= x;
Done:= Done union {x};
od:
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|