|
|
A158933
|
|
Decimal expansion of Sum_{n>=1} ((-1)^(n+1))/F(n) where F(n) is the n-th Fibonacci number A000045(n).
|
|
5
|
|
|
2, 8, 9, 1, 4, 4, 6, 4, 8, 5, 7, 0, 6, 7, 1, 5, 8, 3, 1, 1, 2, 3, 0, 5, 5, 0, 9, 6, 1, 5, 7, 2, 9, 1, 6, 6, 9, 5, 4, 8, 8, 1, 9, 5, 1, 5, 8, 9, 6, 9, 1, 3, 6, 0, 0, 2, 5, 0, 2, 6, 4, 8, 5, 0, 6, 3, 0, 3, 5, 7, 6, 1, 7, 3, 8, 8, 6, 4, 5, 5, 1, 5, 8, 2, 4, 1, 1, 5, 8, 3, 1, 8, 2, 8, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
André-Jeannin (1989) proved that this constant is irrational, and Tachiya (2004) proved that it does not belong to the quadratic number field Q(sqrt(5)). - Amiram Eldar, Oct 30 2020
|
|
LINKS
|
|
|
FORMULA
|
Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) + (-1)^k), where phi is the golden ratio (A001622). - Amiram Eldar, Oct 04 2020
|
|
EXAMPLE
|
0.2891446485706715831123055096157291669...
|
|
MAPLE
|
with(combinat, fibonacci):Digits:=100:s:=0:for n from 1 to 2000 do: a1:=fibonacci(n):s:=s+evalf(1/a1)*(-1)^(n+1):od:print(s):
|
|
MATHEMATICA
|
digits = 95; NSum[(-1)^(n+1)*(1/Fibonacci[n]), {n, 1, Infinity}, WorkingPrecision -> digits+1, NSumTerms -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Jan 28 2014 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|