login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158933
Decimal expansion of Sum_{n>=1} ((-1)^(n+1))/F(n) where F(n) is the n-th Fibonacci number A000045(n).
5
2, 8, 9, 1, 4, 4, 6, 4, 8, 5, 7, 0, 6, 7, 1, 5, 8, 3, 1, 1, 2, 3, 0, 5, 5, 0, 9, 6, 1, 5, 7, 2, 9, 1, 6, 6, 9, 5, 4, 8, 8, 1, 9, 5, 1, 5, 8, 9, 6, 9, 1, 3, 6, 0, 0, 2, 5, 0, 2, 6, 4, 8, 5, 0, 6, 3, 0, 3, 5, 7, 6, 1, 7, 3, 8, 8, 6, 4, 5, 5, 1, 5, 8, 2, 4, 1, 1, 5, 8, 3, 1, 8, 2, 8, 5
OFFSET
0,1
COMMENTS
André-Jeannin (1989) proved that this constant is irrational, and Tachiya (2004) proved that it does not belong to the quadratic number field Q(sqrt(5)). - Amiram Eldar, Oct 30 2020
LINKS
Richard André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Vol. 308, No. 19 (1989), pp. 539-541.
Yohei Tachiya, Irrationality of certain Lambert series, Tokyo Journal of Mathematics, Vol. 27, No. 1 (2004), pp. 75-85.
Eric Weisstein's World of Mathematics, Reciprocal Fibonacci Constant.
FORMULA
Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) + (-1)^k), where phi is the golden ratio (A001622). - Amiram Eldar, Oct 04 2020
Equals A153387 - A153386. - Joerg Arndt, Oct 04 2020
Equals 1 - A324007. - Amiram Eldar, Feb 09 2023
EXAMPLE
0.2891446485706715831123055096157291669...
MAPLE
with(combinat, fibonacci):Digits:=100:s:=0:for n from 1 to 2000 do: a1:=fibonacci(n):s:=s+evalf(1/a1)*(-1)^(n+1):od:print(s):
MATHEMATICA
digits = 95; NSum[(-1)^(n+1)*(1/Fibonacci[n]), {n, 1, Infinity}, WorkingPrecision -> digits+1, NSumTerms -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Jan 28 2014 *)
PROG
(PARI) -sumalt(n=1, (-1)^n/fibonacci(n)) \\ Charles R Greathouse IV, Oct 03 2016
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Michel Lagneau, Mar 26 2011
EXTENSIONS
Offset corrected by Arkadiusz Wesolowski, Jun 28 2011
STATUS
approved