|
|
A158934
|
|
Decimal expansion of xi = (cos(Pi/5) - 1/2) / (sin(Pi/5) + 1/2).
|
|
2
|
|
|
2, 8, 4, 0, 7, 9, 0, 4, 3, 8, 4, 0, 4, 1, 2, 2, 9, 6, 0, 2, 8, 2, 9, 1, 8, 3, 2, 3, 9, 3, 1, 2, 6, 1, 6, 9, 0, 9, 1, 0, 8, 8, 0, 8, 8, 4, 4, 5, 7, 3, 7, 5, 8, 2, 7, 5, 9, 1, 6, 2, 6, 6, 6, 1, 5, 5, 0, 4, 5, 8, 7, 7, 3, 5, 1, 4, 8, 4, 5, 5, 3, 7, 3, 0, 3, 7, 8, 4, 1, 7, 7, 5, 2, 2, 3, 1, 6, 2, 5, 8, 6, 7, 0, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
This constant xi arises in the Davenport-Heilbronn zeta-function Z(s)=Sum_{k>=1} b(k)/k^s where b(k) is the 5-periodic sequence with period [1,xi,-xi,0]. Z satisfies a functional equation (like zeta) but does not satisfy RH. Some nontrivial zeros are off the critical line (see reference).
|
|
REFERENCES
|
Peter Borwein, Stephen Choi, Brendan Rooney and Andrea Weirathmueller, The Riemann Hypothesis, Springer, 2009, pp. 136-137.
|
|
LINKS
|
|
|
FORMULA
|
Equals (sqrt(10-2*sqrt(5))-2)/(sqrt(5)-1).
|
|
EXAMPLE
|
0.2840790438404122960282...
|
|
MATHEMATICA
|
(Sqrt[5]-1) / (2+Sqrt[10-2*Sqrt[5]]) // RealDigits[#, 10, 104]& // First (* Jean-François Alcover, Mar 04 2013 *)
|
|
PROG
|
(PARI) xi=(cos(Pi/5)-1/2)/(sin(Pi/5)+1/2)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|