login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158934 Decimal expansion of xi = (cos(Pi/5) - 1/2) / (sin(Pi/5) + 1/2). 2
2, 8, 4, 0, 7, 9, 0, 4, 3, 8, 4, 0, 4, 1, 2, 2, 9, 6, 0, 2, 8, 2, 9, 1, 8, 3, 2, 3, 9, 3, 1, 2, 6, 1, 6, 9, 0, 9, 1, 0, 8, 8, 0, 8, 8, 4, 4, 5, 7, 3, 7, 5, 8, 2, 7, 5, 9, 1, 6, 2, 6, 6, 6, 1, 5, 5, 0, 4, 5, 8, 7, 7, 3, 5, 1, 4, 8, 4, 5, 5, 3, 7, 3, 0, 3, 7, 8, 4, 1, 7, 7, 5, 2, 2, 3, 1, 6, 2, 5, 8, 6, 7, 0, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
This constant xi arises in the Davenport-Heilbronn zeta-function Z(s)=Sum_{k>=1} b(k)/k^s where b(k) is the 5-periodic sequence with period [1,xi,-xi,0]. Z satisfies a functional equation (like zeta) but does not satisfy RH. Some nontrivial zeros are off the critical line (see reference).
REFERENCES
Peter Borwein, Stephen Choi, Brendan Rooney and Andrea Weirathmueller, The Riemann Hypothesis, Springer, 2009, pp. 136-137.
LINKS
Bruce C. Berndt, Heng Huat Chan and Liang-Cheng Zhang, Explicit evaluations of the Rogers-Ramanujan continued fraction, Journal für die reine und angewandte Mathematik, Vol. 480 (1996), pp. 141-160, eq. (1.1).
Harold Davenport and Hans Heilbronn, On the zeros of certain Dirichlet series, Journal of the London Mathematical Society, Vol. s1-11, No. 3 (1936), pp. 181-185.
Harold Davenport and Hans Heilbronn, On the zeros of certain Dirichlet series (Second paper), Journal of the London Mathematical Society, Vol. s1-11, No. 4 (1936), pp. 307-312.
FORMULA
Equals (sqrt(10-2*sqrt(5))-2)/(sqrt(5)-1).
Equals (A001622-1)/(2*A019845+1). - R. J. Mathar, Apr 02 2009
Equals sqrt((5 + sqrt(5))/2) - (sqrt(5) + 1)/2 = A188593 - A001622. - Amiram Eldar, Jan 23 2022
EXAMPLE
0.2840790438404122960282...
MATHEMATICA
(Sqrt[5]-1) / (2+Sqrt[10-2*Sqrt[5]]) // RealDigits[#, 10, 104]& // First (* Jean-François Alcover, Mar 04 2013 *)
PROG
(PARI) xi=(cos(Pi/5)-1/2)/(sin(Pi/5)+1/2)
CROSSREFS
Sequence in context: A076588 A068565 A092042 * A021356 A030345 A264818
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Mar 31 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 08:27 EDT 2024. Contains 375986 sequences. (Running on oeis4.)