Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jan 23 2022 07:28:06
%S 2,8,4,0,7,9,0,4,3,8,4,0,4,1,2,2,9,6,0,2,8,2,9,1,8,3,2,3,9,3,1,2,6,1,
%T 6,9,0,9,1,0,8,8,0,8,8,4,4,5,7,3,7,5,8,2,7,5,9,1,6,2,6,6,6,1,5,5,0,4,
%U 5,8,7,7,3,5,1,4,8,4,5,5,3,7,3,0,3,7,8,4,1,7,7,5,2,2,3,1,6,2,5,8,6,7,0,4
%N Decimal expansion of xi = (cos(Pi/5) - 1/2) / (sin(Pi/5) + 1/2).
%C This constant xi arises in the Davenport-Heilbronn zeta-function Z(s)=Sum_{k>=1} b(k)/k^s where b(k) is the 5-periodic sequence with period [1,xi,-xi,0]. Z satisfies a functional equation (like zeta) but does not satisfy RH. Some nontrivial zeros are off the critical line (see reference).
%D Peter Borwein, Stephen Choi, Brendan Rooney and Andrea Weirathmueller, The Riemann Hypothesis, Springer, 2009, pp. 136-137.
%H Bruce C. Berndt, Heng Huat Chan and Liang-Cheng Zhang, <a href="https://doi.org/10.1515/crll.1996.480.141">Explicit evaluations of the Rogers-Ramanujan continued fraction</a>, Journal für die reine und angewandte Mathematik, Vol. 480 (1996), pp. 141-160, eq. (1.1).
%H Harold Davenport and Hans Heilbronn, <a href="https://doi.org/10.1112/jlms/s1-11.3.181">On the zeros of certain Dirichlet series</a>, Journal of the London Mathematical Society, Vol. s1-11, No. 3 (1936), pp. 181-185.
%H Harold Davenport and Hans Heilbronn, <a href="https://doi.org/10.1112/jlms/s1-11.4.307">On the zeros of certain Dirichlet series (Second paper)</a>, Journal of the London Mathematical Society, Vol. s1-11, No. 4 (1936), pp. 307-312.
%F Equals (sqrt(10-2*sqrt(5))-2)/(sqrt(5)-1).
%F Equals (A001622-1)/(2*A019845+1). - _R. J. Mathar_, Apr 02 2009
%F Equals sqrt((5 + sqrt(5))/2) - (sqrt(5) + 1)/2 = A188593 - A001622. - _Amiram Eldar_, Jan 23 2022
%e 0.2840790438404122960282...
%t (Sqrt[5]-1) / (2+Sqrt[10-2*Sqrt[5]]) // RealDigits[#, 10, 104]& // First (* _Jean-François Alcover_, Mar 04 2013 *)
%o (PARI) xi=(cos(Pi/5)-1/2)/(sin(Pi/5)+1/2)
%Y Cf. A001622, A158241, A188593, A019845.
%K cons,nonn
%O 0,1
%A _Benoit Cloitre_, Mar 31 2009