|
|
A136367
|
|
Numbers k such that A024529(k+1) is prime.
|
|
5
|
|
|
2, 3, 4, 5, 11, 59, 397, 613, 906, 1560, 2162, 2915, 5211
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A024529(n+1) = numerator of 1 + Sum_{j=1..n} (-1)^j/prime(j): 1, 5, 19, 163, 1583, 22889, 359083, 7333087, 158961311, 4832970889, 143352404329, ...
|
|
LINKS
|
Table of n, a(n) for n=1..13.
|
|
MATHEMATICA
|
f=1; Do[ p=Prime[n]; f=f + (-1)^n*1/p; g=Numerator[f] ; If[ PrimeQ[g], Print[ {n, g} ] ], {n, 1, 60} ]
|
|
CROSSREFS
|
Cf. A024529: numerator of 1 + Sum_{k=1..n-1} (-1)^k/prime(k).
Cf. A024530, A136365, A136366, A136368, A136369, A136370, A136371.
Sequence in context: A032988 A280206 A190783 * A014545 A158930 A330263
Adjacent sequences: A136364 A136365 A136366 * A136368 A136369 A136370
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Alexander Adamchuk, Dec 27 2007
|
|
EXTENSIONS
|
a(7)-a(9) from Alexander Adamchuk, Sep 15 2010
a(10) from Vincenzo Librandi, Aug 26 2019
a(11)-a(13) from Robert Price, Aug 29 2019
|
|
STATUS
|
approved
|
|
|
|