login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121258
a(n) = a(n-1)*a(n-2)*a(n-3) - 1 with a(0)=a(1)=a(2)=2.
3
2, 2, 2, 7, 27, 377, 71252, 725274107, 19482315963330427, 1006792136061113006060577048627
OFFSET
0,1
COMMENTS
Analog of A055937 a(n) = a(n-1)*a(n-2) - 1. What is the equivalent continued fraction and asymptotic representation, by analogy to A007660 a(n) = a(n-1)*a(n-2) + 1?
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..14 (shortened by N. J. A. Sloane, Jan 13 2019)
FORMULA
a(n) ~ c^(A058265^n), where c = 1.3319334322065642848267... - Vaclav Kotesovec, Jun 15 2019
MATHEMATICA
RecurrenceTable[{a[0]==a[1]==a[2]==2, a[n] == a[n-1]*a[n-2]*a[n-3] - 1}, a, {n, 0, 15}] (* G. C. Greubel, Jun 07 2019 *)
nxt[{a_, b_, c_}]:={b, c, a*b*c-1}; NestList[nxt, {2, 2, 2}, 10][[All, 1]] (* Harvey P. Dale, Jun 25 2020 *)
PROG
(Magma) I:=[2, 2, 2]; [n le 3 select I[n] else Self(n-1)*Self(n-2)* Self(n-3)-1: n in [1..12]]; // Vincenzo Librandi, Nov 14 2011
(PARI) a(n) = if(n<3, 2, a(n-1)*a(n-2)*a(n-3) - 1);
vector(12, n, n--; a(n)) \\ G. C. Greubel, Jun 07 2019
(Sage)
def a(n):
if (n==0 or n==1 or n==2): return 2
else: return a(n-1)*a(n-2)*a(n-3) - 1
[a(n) for n in (0..12)] # G. C. Greubel, Jun 07 2019
CROSSREFS
Sequence in context: A138757 A158927 A367857 * A087421 A309574 A132697
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Aug 22 2006
EXTENSIONS
Data corrected by Vincenzo Librandi, Nov 14 2011
STATUS
approved