OFFSET
0,5
COMMENTS
If we omit the first three terms of the sequence, a(n)/a(n-1) can be expressed as the continued fraction [a(n-2); a(n-1)]. - Eric Angelini, Feb 10 2005
This may be regarded as a multiplicative dual of the Fibonacci sequence A000045. Write Fibonacci's formula as F(0)=0, F(1)=1; F(n)=[F(n-1)+F(n-2)]*1 with n>1. Swap '+' and '*' and we have the present sequence! - B. Joshipura (bhushit(AT)yahoo.com), Aug 29 2007
a(n+1) divides a(2n+1), a(3n+1), a(4n+1), etc., this is because modulo a(n+1): a(1)=a(n+1)=0 and a(2)=a(n+2)=1 so the sequence repeats modulo a(n+1) with period n. - Isaac Kaufmann, Sep 04 2020
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..19 (shortened by N. J. A. Sloane, Jan 13 2019)
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fib. Quart., 11 (1973), 429-437.
Bhushit Joshipura, 1, 1, 2, 3, 7, ... Multiplication dual of Fibonacci?, posting in newsgroup sci.math, Jul 28 2007.
S. Kak, The Golden Mean and the Physics of Aesthetics, arXiv:physics/0411195 [physics.hist-ph], 2004.
FORMULA
a(n) is asymptotic to c^(phi^n) where phi = (1 + sqrt(5))/2 and c = A258113 = 1.1130579759029319... - Benoit Cloitre, Sep 26 2003
b(n) = a(n+1) is a divisibility sequence. - Michael Somos, Dec 29 2012
EXAMPLE
b(10) / b(5) = 1803416167 / 7 = 257630881. - Michael Somos, Dec 29 2012
MATHEMATICA
a[0] = a[1] = 0; a[n_] := a[n - 1]*a[n - 2] + 1; Table[ a[n], {n, 0, 15} ]
RecurrenceTable[{a[0]==a[1]==0, a[n]==a[n-1]a[n-2]+1}, a, {n, 20}] (* Harvey P. Dale, Nov 12 2011 *)
PROG
(Magma) I:=[0, 0]; [n le 2 select I[n] else Self(n-1)*Self(n-2)+1: n in [1..20]]; // Vincenzo Librandi, Nov 14 2011
(Haskell)
a007660 n = a007660_list !! n
a007660_list = 0 : 0 : map (+ 1)
(zipWith (*) a007660_list $ tail a007660_list)
-- Reinhard Zumkeller, Jan 17 2015
(Maxima) a(n) := if (n=0 or n=1) then 0 else a(n-1)*a(n-2)+1 $
makelist(a(n), n, 0, 18); /* Emanuele Munarini, Mar 24 2017 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved